Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Thorac Cardiovasc Surg ; 166(4): 1119-1129.e1, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-35379474

RESUMO

OBJECTIVE: Due to severely limited donor heart availability, durable mechanical circulatory support remains the only treatment option for many patients with end-stage heart failure. However, treatment complexity persists due to its univentricular support modality and continuous contact with blood. We investigated the function and safety of reBEAT (AdjuCor GmbH), a novel, minimal invasive mechanical circulatory support device that completely avoids blood contact and provides pulsatile, biventricular support. METHODS: For each animal tested, an accurately sized cardiac implant was manufactured from computed tomography scan analyses. The implant consists of a cardiac sleeve with three inflatable cushions, 6 epicardial electrodes and driveline connecting to an electro-pneumatic, extracorporeal portable driver. Continuous epicardial electrocardiogram signal analysis allows for systolic and diastolic synchronization of biventricular mechanical support. In 7 pigs (weight, 50-80 kg), data were analyzed acutely (under beta-blockade, n = 5) and in a 30-day long-term survival model (n = 2). Acquisition of intracardiac pressures and aortic and pulmonary flow data were used to determine left ventricle and right ventricle stroke work and stroke volume, respectively. RESULTS: Each implant was successfully positioned around the ventricles. Automatic algorithm electrocardiogram signal annotations resulted in precise, real-time mechanical support synchronization with each cardiac cycle. Consequently, progressive improvements in cardiac hemodynamic parameters in acute animals were achieved. Long-term survival demonstrated safe device integration, and clear and stable electrocardiogram signal detection over time. CONCLUSIONS: The present study demonstrates biventricular cardiac support with reBEAT. Various demonstrated features are essential for realistic translation into the clinical setting, including safe implantation, anatomical fit, safe device-tissue integration, and real-time electrocardiogram synchronized mechanical support, result in effective device function and long-term safety.


Assuntos
Insuficiência Cardíaca , Transplante de Coração , Coração Auxiliar , Animais , Suínos , Humanos , Doadores de Tecidos , Hemodinâmica
2.
Mater Sci Eng C Mater Biol Appl ; 103: 109751, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31349422

RESUMO

The limited regenerative capacity of the heart after a myocardial infarct results in remodeling processes that can progress to congestive heart failure (CHF). Several strategies including mechanical stabilization of the weakened myocardium and regenerative approaches (specifically stem cell technologies) have evolved which aim to prevent CHF. However, their final performance remains limited motivating the need for an advanced strategy with enhanced efficacy and reduced deleterious effects. An epicardial carrier device enabling a targeted application of a biomaterial-based therapy to the infarcted ventricle wall could potentially overcome the therapy and application related issues. Such a device could play a synergistic role in heart regeneration, including the provision of mechanical support to the remodeling heart wall, as well as providing a suitable environment for in situ stem cell delivery potentially promoting heart regeneration. In this study, we have developed a novel, single-stage concept to support the weakened myocardial region post-MI by applying an elastic, biodegradable patch (SPREADS) via a minimal-invasive, closed chest intervention to the epicardial heart surface. We show a significant increase in %LVEF 14 days post-treatment when GS (clinical gold standard treatment) was compared to GS + SPREADS + Gel with and without cells (p ≤ 0.001). Furthermore, we did not find a significant difference in infarct quality or blood vessel density between any of the groups which suggests that neither infarct quality nor vascularization is the mechanism of action of SPREADS. The SPREADS device could potentially be used to deliver a range of new or previously developed biomaterial hydrogels, a remarkable potential to overcome the translational hurdles associated with hydrogel delivery to the heart.


Assuntos
Implantes Absorvíveis , Terapia Baseada em Transplante de Células e Tecidos/instrumentação , Hidrogéis/administração & dosagem , Células-Tronco Mesenquimais , Infarto do Miocárdio/terapia , Tecido Adiposo/citologia , Animais , Materiais Biocompatíveis , Movimento Celular/efeitos dos fármacos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Desenho de Equipamento , Feminino , Humanos , Ácido Hialurônico , Hidrogéis/química , Hidrogéis/farmacologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/efeitos dos fármacos , Infarto do Miocárdio/fisiopatologia , Pericárdio , Suínos , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...