Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurol ; 15: 1325222, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38343710

RESUMO

Introduction: Tubular aggregates (TA) are skeletal muscle structures that arise from the progressive accumulation of sarcoplasmic reticulum proteins. Cytoplasmic aggregates in muscle fibers have already been observed in mice and humans, mainly during aging and muscle disease processes. However, the effects of muscle regeneration on TA formation have not yet been reported. This study aimed to investigate the relationship between degeneration/regeneration and TA in aged murine models. We investigated the presence and quantity of TA in old males from two murine models with intense muscle degeneration and regeneration. Methods: One murine lineage was a Dmdmdx model of Duchenne muscular dystrophy (n = 6). In the other model, muscle damage was induced by electroporation in C57BL/6J wild-type mice, and analyzed after 5, 15, and 30 days post-electroporation (dpe; n = 15). Regeneration was evaluated based on the quantity of developmental myosin heavy chain (dMyHC)-positive fibers. Results: The frequency of fibers containing TA was higher in aged C57BL/6J (26 ± 8.3%) than in old dystrophic Dmdmdx mice (2.4 ± 2%). Comparing the data from induced degeneration/regeneration in normal mice revealed a reduced proportion of TA-containing fibers after 5 and 30 dpe. Normal aged muscle was able to regenerate and form dMyHC+ fibers, mainly at 5 dpe (0.1 ± 0.1 vs. 16.5 ± 2.6%). However, there was no difference in force or resistance between normal and 30 dpe animals, except for the measurements by the Actimeter device, which showed the worst parameters in the second group. Discussion: Our results suggest that TA also forms in the Dmdmdx muscle but in smaller amounts. The intense degeneration and regeneration of the old dystrophic model resulted in the generation of new muscle fibers with a lower quantity of TA. Data from electroporated wild-type mice support the idea that muscle regeneration leads to a reduction in the amount of TA. We suggest that TA accumulates in muscle fibers throughout physiological aging and that regeneration leads to the formation of new fibers without these structures. In addition, these new fibers do not confer functional benefits to the muscle.

2.
Gene ; 871: 147424, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37054903

RESUMO

Xia-Gibbs syndrome (XGS) is a syndromic form of intellectual disability caused by heterozygous AHDC1 variants, but the pathophysiological mechanisms underlying this syndrome are still unclear. In this manuscript, we describe the development of two different functional models: three induced pluripotent stem cell (iPSC) lines with different loss-of-function (LoF) AHDC1 variants, derived by reprogramming peripheral blood mononuclear cells from XGS patients, and a zebrafish strain with a LoF variant in the ortholog gene (ahdc1) obtained through CRISPR/Cas9-mediated editing. The three iPSC lines showed expression of pluripotency factors (SOX2, SSEA-4, OCT3/4, and NANOG). To verify the capacity of iPSC to differentiate into the three germ layers, we obtained embryoid bodies (EBs), induced their differentiation, and confirmed the mRNA expression of ectodermal, mesodermal, and endodermal markers using the TaqMan hPSC Scorecard. The iPSC lines were also approved for the following quality tests: chromosomal microarray analysis (CMA), mycoplasma testing, and short tandem repeat (STR) DNA profiling. The zebrafish model has an insertion of four base pairs in the ahdc1 gene, is fertile, and breeding between heterozygous and wild-type (WT) animals generated offspring in a genotypic proportion in agreement with Mendelian law. The established iPSC and zebrafish lines were deposited on the hpscreg.eu and zfin.org platforms, respectively. These biological models are the first for XGS and will be used in future studies that investigate the pathophysiology of this syndrome, unraveling its underlying molecular mechanisms.


Assuntos
Anormalidades Múltiplas , Células-Tronco Pluripotentes Induzidas , Deficiência Intelectual , Animais , Deficiência Intelectual/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Peixe-Zebra/genética , Leucócitos Mononucleares , Anormalidades Múltiplas/genética , Diferenciação Celular/genética , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...