Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(16): 166601, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38701448

RESUMO

In multivalley systems, the valley pseudospin offers rich physics going from encoding of information by its polarization (valleytronics), to exploring novel phases of matter when its degeneracy is changed. Here, by strain engineering, we reveal fully valley-polarized quantum Hall phases in the Pb_{1-x}Sn_{x}Se Dirac system. Remarkably, when the valley energy splitting exceeds the fundamental band gap, we observe a "bipolar quantum Hall phase," heralded by the coexistence of hole and electron chiral edge states at distinct valleys in the same quantum well. This suggests that spatially overlaid counterpropagating chiral edge states emerging at different valleys do not interfere with each other.

2.
Phys Rev Lett ; 119(10): 106602, 2017 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-28949185

RESUMO

Negative longitudinal magnetoresistance (NLMR) is shown to occur in topological materials in the extreme quantum limit, when a magnetic field is applied parallel to the excitation current. We perform pulsed and dc field measurements on Pb_{1-x}Sn_{x}Se epilayers where the topological state can be chemically tuned. The NLMR is observed in the topological state, but is suppressed and becomes positive when the system becomes trivial. In a topological material, the lowest N=0 conduction Landau level disperses down in energy as a function of increasing magnetic field, while the N=0 valence Landau level disperses upwards. This anomalous behavior is shown to be responsible for the observed NLMR. Our work provides an explanation of the outstanding question of NLMR in topological insulators and establishes this effect as a possible hallmark of bulk conduction in topological matter.

3.
Sci Rep ; 6: 20323, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26843435

RESUMO

Dirac fermions in condensed matter physics hold great promise for novel fundamental physics, quantum devices and data storage applications. IV-VI semiconductors, in the inverted regime, have been recently shown to exhibit massless topological surface Dirac fermions protected by crystalline symmetry, as well as massive bulk Dirac fermions. Under a strong magnetic field (B), both surface and bulk states are quantized into Landau levels that disperse as B(1/2), and are thus difficult to distinguish. In this work, magneto-optical absorption is used to probe the Landau levels of high mobility Bi-doped Pb0.54Sn0.46Te topological crystalline insulator (111)-oriented films. The high mobility achieved in these thin film structures allows us to probe and distinguish the Landau levels of both surface and bulk Dirac fermions and extract valuable quantitative information about their physical properties. This work paves the way for future magnetooptical and electronic transport experiments aimed at manipulating the band topology of such materials.

4.
Nano Lett ; 14(10): 5797-802, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25226076

RESUMO

Graphene has been proposed as a particularly attractive material for the achievement of strong optical nonlinearities, in particular generation of terahertz radiation. However, owing to the particular symmetries of the C-lattice, second-order nonlinear effects such as difference-frequency or rectification processes are predicted to vanish in a graphene layer for optical excitations (ℏω ≫ 2EF) involving the two relativistic dispersion bands. Here we experimentally demonstrate that graphene excited by femtosecond optical pulses generate a coherent THz radiation ranging from 0.1 to 4 THz via a second-order nonlinear effect. We fully interpret its characteristics with a model describing the electron and hole states beyond the usual massless relativistic scheme. This second-order nonlinear effect is dynamical photon drag, which relies on the transfer of light momentum to the carriers by the ponderomotive electric and magnetic forces. The model highlights the key roles of next-C-neighbor couplings and of unequal electron and hole lifetimes in the observed second-order response. Finally, our results indicate that dynamical photon drag effect in graphene can provide emission up to 60 THz, opening new routes for the generation of ultrabroadband terahertz pulses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...