Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Pathol ; 263(2): 217-225, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38551073

RESUMO

Environmental factors like the pathogenicity island polyketide synthase positive (pks+) Escherichia coli (E. coli) could have potential for risk stratification in colorectal cancer (CRC) screening. The association between pks+ E. coli measured in fecal immunochemical test (FIT) samples and the detection of advanced neoplasia (AN) at colonoscopy was investigated. Biobanked FIT samples were analyzed for both presence of E. coli and pks+ E. coli and correlated with colonoscopy findings; 5020 CRC screening participants were included. Controls were participants in which no relevant lesion was detected because of FIT-negative results (cut-off ≥15 µg Hb/g feces), a negative colonoscopy, or a colonoscopy during which only a nonadvanced polyp was detected. Cases were participants with AN [CRC, advanced adenoma (AA), or advanced serrated polyp (ASP)]. Existing DNA isolation and quantitative polymerase chain reaction (qPCR) procedures were used for the detection of E. coli and pks+ E. coli in stool. A total of 4542 (90.2%) individuals were E. coli positive, and 1322 (26.2%) were pks+ E. coli positive. The prevalence of E. coli in FIT samples from individuals with AN was 92.9% compared to 89.7% in FIT samples of controls (p = 0.010). The prevalence of pks+ E. coli in FIT samples from individuals with AN (28.6%) and controls (25.9%) was not significantly different (p = 0.13). The prevalences of pks+ E. coli in FIT samples from individuals with CRC, AA, or ASP were 29.6%, 28.3%, and 32.1%, respectively. In conclusion, the prevalence of pks+ E. coli in a screening population was 26.2% and did not differ significantly between individuals with AN and controls. These findings disqualify the straightforward option of using a snapshot measurement of pks+ E. coli in FIT samples as a stratification biomarker for CRC risk. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias Colorretais , Detecção Precoce de Câncer , Escherichia coli , Fezes , Policetídeo Sintases , Humanos , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/diagnóstico , Fezes/microbiologia , Fezes/enzimologia , Escherichia coli/isolamento & purificação , Escherichia coli/enzimologia , Escherichia coli/genética , Masculino , Detecção Precoce de Câncer/métodos , Feminino , Pessoa de Meia-Idade , Idoso , Policetídeo Sintases/genética , Colonoscopia , Fatores de Risco , Adenoma/microbiologia , Adenoma/diagnóstico , Medição de Risco , Biomarcadores Tumorais , Estudos de Casos e Controles
2.
Lancet Oncol ; 25(3): 326-337, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38346438

RESUMO

BACKGROUND: The faecal immunochemical test (FIT) is widely employed for colorectal cancer screening. However, its sensitivity for advanced precursor lesions remains suboptimal. The multitarget FIT (mtFIT), measuring haemoglobin, calprotectin, and serpin family F member 2, has demonstrated enhanced sensitivity for advanced neoplasia, especially advanced adenomas, at equal specificity to FIT. This study aimed to prospectively validate and investigate the clinical utlitity of mtFIT versus FIT in a setting of population-based colorectal cancer screening. METHODS: Individuals aged 55-75 years and who were eligible for the Dutch national FIT-based colorectal cancer screening programme were invited to submit both a FIT and mtFIT sample collected from the same bowel movement. Positive FIT (47 µg/g haemoglobin cutoff) or mtFIT (based on decision-tree algorithm) led to a colonoscopy referral. The primary outcome was the relative detection rate of mtFIT versus FIT for all advanced neoplasia. Secondary outcomes were the relative detection rates of colorectal cancer, advanced adenoma, and advanced serrated polyps individually and the long-term effect of mtFIT-based versus FIT-based programmatic screening on colorectal cancer incidence, mortality, and cost, determined with microsimulation modelling. The study has been registered in ClinicalTrials.gov, NCT05314309, and is complete. FINDINGS: Between March 25 and Dec 7, 2022, 35 786 individuals were invited to participate in the study, of whom 15 283 (42·7%) consented, and 13 187 (86·3%) of 15 283 provided both mtFIT and FIT samples with valid results. Of the 13 187 participants, 6637 (50·3%) were male and 6550 (49·7%) were female. mtFIT showed a 9·11% (95% CI 8·62-9·61) positivity rate and 2·27% (95% CI 2·02-2·54) detection rate for advanced neoplasia, compared with a positivity rate of 4·08% (3·75-4·43) and a detection rate of 1·21% (1·03-1·41) for FIT. Detection rates of mtFIT versus FIT were 0·20% (95% CI 0·13-0·29) versus 0·17% (0·11-0·27) for colorectal cancer; 1·64% (1·43-1·87) versus 0·86% (0·72-1·04) for advanced adenoma, and 0·43% (0·33-0·56) versus 0·17% (0·11-0·26) for advanced serrated polyps. Modelling demonstrated that mtFIT-based screening could reduce colorectal cancer incidence by 21% and associated mortality by 18% compared with the current Dutch colorectal cancer screening programme, at feasible costs. Furthermore, at equal positivity rates, mtFIT outperformed FIT in terms of diagnostic yield. At an equally low positivity rate, mtFIT-based screening was predicted to further decrease colorectal cancer incidence by 5% and associated mortality by 4% compared with FIT-based screening. INTERPRETATION: The higher detection rate of mtFIT for advanced adenoma compared with FIT holds the potential to translate into additional and clinically meaningful long-term colorectal cancer incidence and associated mortality reductions in programmatic colorectal cancer screening. FUNDING: Stand Up to Cancer, Dutch Cancer Society, Dutch Digestive Foundation, and Health~Holland.


Assuntos
Adenoma , Neoplasias Colorretais , Humanos , Detecção Precoce de Câncer , Defecação , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/epidemiologia , Adenoma/diagnóstico , Adenoma/epidemiologia , Hemoglobinas
3.
Cancer Res Commun ; 3(11): 2292-2301, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37921412

RESUMO

Current morphologic features defining advanced adenomas (size ≥10 mm, high-grade dysplasia or ≥25% villous component) cannot optimally distinguish individuals at high risk or low risk of metachronous colorectal cancer (me-CRC), which may result in suboptimal surveillance. Certain DNA copy-number alterations (CNAs) are associated with adenoma-to-carcinoma progression. We aimed to evaluate whether these molecular features can better predict an individual's risk of me-CRC than the morphologic advanced adenoma features.In this nested case-control study, 529 individuals with a single adenoma at first colonoscopy were selected from a Norwegian adenoma cohort. DNA copy-number profiles were determined, by low-coverage whole-genome sequencing. Prevalence of CNAs in advanced and non-advanced adenomas and its association (OR) with me-CRC was assessed. For the latter, cases (with me-CRC) were matched to controls (without me-CRC) on follow-up, age and sex.CNAs associated with adenoma-to-carcinoma progression were observed in 85/267 (32%) of advanced adenomas and in 27/262 (10%) of non-advanced adenomas. me-CRC was statistically significantly associated, also after adjustment for other variables, with age at baseline [OR, 1.14; 95% confidence interval CI), 1.03-1.26; P = 0.012], advanced adenomas (OR, 2.46; 95% CI, 1.50-4.01; P < 0.001) and with the presence of ≥3 DNA copy-number losses (OR, 1.90; 95% CI. 1.02-3.54; P = 0.043).Molecularly-defined high-risk adenomas were associated with me-CRC, but the association of advanced adenoma with me-CRC was stronger. SIGNIFICANCE: Identifying new biomarkers may improve prediction of me-CRC for individuals with adenomas and optimize surveillance intervals to reduce risk of colorectal cancer and reduce oversurveillance of patients with low risk of colorectal cancer. Use of DNA CNAs alone does not improve prediction of me-CRC. Further research to improve risk classification is required.


Assuntos
Adenoma , Carcinoma , Neoplasias Colorretais , Humanos , Neoplasias Colorretais/diagnóstico , Estudos de Casos e Controles , Adenoma/diagnóstico , DNA
4.
Nat Commun ; 12(1): 5060, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34417454

RESUMO

Non-invasive approaches for cell-free DNA (cfDNA) assessment provide an opportunity for cancer detection and intervention. Here, we use a machine learning model for detecting tumor-derived cfDNA through genome-wide analyses of cfDNA fragmentation in a prospective study of 365 individuals at risk for lung cancer. We validate the cancer detection model using an independent cohort of 385 non-cancer individuals and 46 lung cancer patients. Combining fragmentation features, clinical risk factors, and CEA levels, followed by CT imaging, detected 94% of patients with cancer across stages and subtypes, including 91% of stage I/II and 96% of stage III/IV, at 80% specificity. Genome-wide fragmentation profiles across ~13,000 ASCL1 transcription factor binding sites distinguished individuals with small cell lung cancer from those with non-small cell lung cancer with high accuracy (AUC = 0.98). A higher fragmentation score represented an independent prognostic indicator of survival. This approach provides a facile avenue for non-invasive detection of lung cancer.


Assuntos
DNA Tumoral Circulante/metabolismo , Fragmentação do DNA , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Apoptose , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Diagnóstico Diferencial , Detecção Precoce de Câncer , Feminino , Genoma Humano , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Metástase Neoplásica , Estadiamento de Neoplasias , Carcinoma de Pequenas Células do Pulmão/diagnóstico , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/patologia , Adulto Jovem
5.
Ann Intern Med ; 174(9): 1224-1231, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34280333

RESUMO

BACKGROUND: The fecal immunochemical test (FIT) is used in colorectal cancer (CRC) screening, yet it leaves room for improvement. OBJECTIVE: To develop a multitarget FIT (mtFIT) with better diagnostic performance than FIT. DESIGN: Diagnostic test accuracy study. SETTING: Colonoscopy-controlled series. PARTICIPANTS: Persons (n = 1284) from a screening (n = 1038) and referral (n = 246) population were classified by their most advanced lesion (CRC [n = 47], advanced adenoma [n = 135], advanced serrated polyp [n = 30], nonadvanced adenoma [n = 250], and nonadvanced serrated polyp [n = 53]), along with control participants (n = 769). MEASUREMENTS: Antibody-based assays were developed and applied to leftover FIT material. Classification and regression tree (CART) analysis was applied to biomarker concentrations to identify the optimal combination for detecting advanced neoplasia. Performance of this combination, the mtFIT, was cross-validated using a leave-one-out approach and compared with FIT at equal specificity. RESULTS: The CART analysis showed a combination of hemoglobin, calprotectin, and serpin family F member 2-the mtFIT-to have a cross-validated sensitivity for advanced neoplasia of 42.9% (95% CI, 36.2% to 49.9%) versus 37.3% (CI, 30.7% to 44.2%) for FIT (P = 0.025), with equal specificity of 96.6%. In particular, cross-validated sensitivity for advanced adenomas increased from 28.1% (CI, 20.8% to 36.5%) to 37.8% (CI, 29.6% to 46.5%) (P = 0.006). On the basis of these results, early health technology assessment indicated that mtFIT-based screening could be cost-effective compared with FIT. LIMITATION: Study population is enriched with persons from a referral population. CONCLUSION: Compared with FIT, the mtFIT showed better diagnostic accuracy in detecting advanced neoplasia because of an increased detection of advanced adenomas. Moreover, early health technology assessment indicated that these results provide a sound basis to pursue further development of mtFIT as a future test for population-based CRC screening. A prospective screening trial is in preparation. PRIMARY FUNDING SOURCE: Stand Up to Cancer/Dutch Cancer Society, Dutch Digestive Foundation, and HealthHolland.


Assuntos
Neoplasias Colorretais/diagnóstico , Testes Diagnósticos de Rotina/normas , Fezes/química , Programas de Rastreamento/instrumentação , Idoso , Biomarcadores Tumorais/química , Colonoscopia , Detecção Precoce de Câncer , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
6.
EMBO Rep ; 22(6): e51913, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33890711

RESUMO

The N-Myc Downstream-Regulated Gene 4 (NDRG4), a prominent biomarker for colorectal cancer (CRC), is specifically expressed by enteric neurons. Considering that nerves are important members of the tumor microenvironment, we here establish different Ndrg4 knockout (Ndrg4-/- ) CRC models and an indirect co-culture of primary enteric nervous system (ENS) cells and intestinal organoids to identify whether the ENS, via NDRG4, affects intestinal tumorigenesis. Linking immunostainings and gastrointestinal motility (GI) assays, we show that the absence of Ndrg4 does not trigger any functional or morphological GI abnormalities. However, combining in vivo, in vitro, and quantitative proteomics data, we uncover that Ndrg4 knockdown is associated with enlarged intestinal adenoma development and that organoid growth is boosted by the Ndrg4-/- ENS cell secretome, which is enriched for Nidogen-1 (Nid1) and Fibulin-2 (Fbln2). Moreover, NID1 and FBLN2 are expressed in enteric neurons, enhance migration capacities of CRC cells, and are enriched in human CRC secretomes. Hence, we provide evidence that the ENS, via loss of Ndrg4, is involved in colorectal pathogenesis and that ENS-derived Nidogen-1 and Fibulin-2 enhance colorectal carcinogenesis.


Assuntos
Neoplasias Colorretais , Sistema Nervoso Entérico , Proteínas de Ligação ao Cálcio , Neoplasias Colorretais/genética , Proteínas da Matriz Extracelular , Humanos , Glicoproteínas de Membrana , Proteínas Musculares , Proteínas do Tecido Nervoso/genética , Neurônios , Microambiente Tumoral
7.
Proteomics Clin Appl ; 15(2-3): e1900119, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33587312

RESUMO

PURPOSE: To mimic the perioperative microenvironment where bacterial products get in contact with colorectal cancer (CRC) cells and study its impact on protein release, we exposed six CRC cell lines to lipopolysaccharide (LPS) and investigated the effect on the secretome using in-depth mass spectrometry-based proteomics. EXPERIMENTAL DESIGN: Cancer cell secretome was harvested in bio-duplicate after LPS treatment, and separated in EV and soluble secretome (SS) fractions. Gel-fractionated proteins were analysed by label-free nano-liquid chromatography coupled to tandem mass spectrometry. NF-κB activation, triggered upon LPS treatment, was evaluated. RESULTS: We report a CRC secretome dataset of 5601 proteins. Comparison of all LPS-treated cells with controls revealed 37 proteins with altered abundance in the SS, including RPS25; and 13 in EVs, including HMGB1. Comparing controls and LPS-treated samples per cell line, revealed 564 significant differential proteins with fold-change >3. The LPS-induced release of RPS25 was validated by western blot. CONCLUSIONS AND CLINICAL RELEVANCE: Bacterial endotoxin has minor impact on the global CRC cell line secretome, yet it may alter protein release in a cell line-specific manner. This modulation might play a role in orchestrating the development of a permissive environment for CRC liver metastasis, especially through EV-communication.


Assuntos
Lipopolissacarídeos
8.
Eur J Cancer ; 144: 91-100, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33341450

RESUMO

AIM: Better stratification of patients with stage II and stage III colon cancer for risk of recurrence is urgently needed. The present study aimed to validate the prognostic value of CDX2 protein expression in colon cancer tissue by routine immunohistochemistry and to evaluate its performance in a head-to-head comparison with tandem mass spectrometry-based proteomics. PATIENT AND METHODS: CDX2 protein expression was evaluated in 386 stage II and III primary colon cancers by immunohistochemical staining of tissue microarrays and by liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis using formalin-fixed paraffin-embedded tissue sections of a matched subset of 23 recurrent and 23 non-recurrent colon cancers. Association between CDX2 expression and disease-specific survival (DSS) was investigated. RESULTS: Low levels of CDX2 protein expression in stage II and III colon cancer as determined by immunohistochemistry was associated with poor DSS (hazard ratio [HR] = 1.97 (95% confidence interval [CI]: 1.26-3.06); p = 0.002). Based on analysis of a selected sample subset, CDX2 prognostic value was more pronounced when detected by LC-MS/MS (HR = 7.56 (95% CI: 2.49-22.95); p < 0.001) compared to detection by immunohistochemistry (HR = 1.60 (95% CI: 0.61-4.22); p = 0.34). CONCLUSION: This study validated CDX2 protein expression as a prognostic biomarker in stage II and III colon cancer, conform previous publications. CDX2 prognostic value appeared to be underestimated when detected by routine immunohistochemistry, probably due to the semiquantitative and subjective nature of this methodology. Quantitative analysis of CDX2 substantially improved its clinical utility as a prognostic biomarker. Therefore, development of routinely applicable quantitative assays for CDX2 expression is needed to facilitate its clinical implementation.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais/metabolismo , Fator de Transcrição CDX2/metabolismo , Colectomia/mortalidade , Neoplasias do Colo/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias do Colo/metabolismo , Neoplasias do Colo/terapia , Terapia Combinada , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Taxa de Sobrevida
9.
Int J Cancer ; 146(7): 1979-1992, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31411736

RESUMO

Removal of colorectal adenomas is an effective strategy to reduce colorectal cancer (CRC) mortality rates. However, as only a minority of adenomas progress to cancer, such strategies may lead to overtreatment. The present study aimed to characterize adenomas by in-depth molecular profiling, to obtain insights into altered biology associated with the colorectal adenoma-to-carcinoma progression. We obtained low-coverage whole genome sequencing, RNA sequencing and tandem mass spectrometry data for 30 CRCs, 30 adenomas and 18 normal adjacent colon samples. These data were used for DNA copy number aberrations profiling, differential expression, gene set enrichment and gene-dosage effect analysis. Protein expression was independently validated by immunohistochemistry on tissue microarrays and in patient-derived colorectal adenoma organoids. Stroma percentage was determined by digital image analysis of tissue sections. Twenty-four out of 30 adenomas could be unambiguously classified as high risk (n = 9) or low risk (n = 15) of progressing to cancer, based on DNA copy number profiles. Biological processes more prevalent in high-risk than low-risk adenomas were related to proliferation, tumor microenvironment and Notch, Wnt, PI3K/AKT/mTOR and Hedgehog signaling, while metabolic processes and protein secretion were enriched in low-risk adenomas. DNA copy number driven gene-dosage effect in high-risk adenomas and cancers was observed for POFUT1, RPRD1B and EIF6. Increased POFUT1 expression in high-risk adenomas was validated in tissue samples and organoids. High POFUT1 expression was also associated with Notch signaling enrichment and with decreased goblet cells differentiation. In-depth molecular characterization of colorectal adenomas revealed POFUT1 and Notch signaling as potential drivers of tumor progression.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Fucosiltransferases/genética , Proteínas Oncogênicas/genética , Adenoma/genética , Adenoma/metabolismo , Adenoma/patologia , Biomarcadores Tumorais , Carcinoma/genética , Carcinoma/metabolismo , Carcinoma/patologia , Neoplasias Colorretais/metabolismo , Progressão da Doença , Fucosiltransferases/metabolismo , Humanos , Proteínas Oncogênicas/metabolismo , Reprodutibilidade dos Testes , Microambiente Tumoral
10.
J Pathol ; 250(3): 288-298, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31784980

RESUMO

Screening to detect colorectal cancer (CRC) in an early or premalignant state is an effective method to reduce CRC mortality rates. Current stool-based screening tests, e.g. fecal immunochemical test (FIT), have a suboptimal sensitivity for colorectal adenomas and difficulty distinguishing adenomas at high risk of progressing to cancer from those at lower risk. We aimed to identify stool protein biomarker panels that can be used for the early detection of high-risk adenomas and CRC. Proteomics data (LC-MS/MS) were collected on stool samples from adenoma (n = 71) and CRC patients (n = 81) as well as controls (n = 129). Colorectal adenoma tissue samples were characterized by low-coverage whole-genome sequencing to determine their risk of progression based on specific DNA copy number changes. Proteomics data were used for logistic regression modeling to establish protein biomarker panels. In total, 15 of the adenomas (15.8%) were defined as high risk of progressing to cancer. A protein panel, consisting of haptoglobin (Hp), LAMP1, SYNE2, and ANXA6, was identified for the detection of high-risk adenomas (sensitivity of 53% at specificity of 95%). Two panels, one consisting of Hp and LRG1 and one of Hp, LRG1, RBP4, and FN1, were identified for high-risk adenomas and CRCs detection (sensitivity of 66% and 62%, respectively, at specificity of 95%). Validation of Hp as a biomarker for high-risk adenomas and CRCs was performed using an antibody-based assay in FIT samples from a subset of individuals from the discovery series (n = 158) and an independent validation series (n = 795). Hp protein was significantly more abundant in high-risk adenoma FIT samples compared to controls in the discovery (p = 0.036) and the validation series (p = 9e-5). We conclude that Hp, LAMP1, SYNE2, LRG1, RBP4, FN1, and ANXA6 may be of value as stool biomarkers for early detection of high-risk adenomas and CRCs. © 2019 Authors. Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Adenoma/diagnóstico , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/diagnóstico , Detecção Precoce de Câncer/métodos , Fezes , Adenoma/metabolismo , Cromatografia Líquida , Neoplasias Colorretais/metabolismo , Progressão da Doença , Humanos , Proteômica , Sensibilidade e Especificidade , Espectrometria de Massas em Tandem
11.
Endosc Int Open ; 7(5): E701-E707, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31073537

RESUMO

Background and study aims Microsatellite instability accelerates colorectal cancer development in patients with Lynch syndrome (LS). Previous research showed that virtual chromoendoscopy increases detection of adenomas during colonoscopy surveillance of patients with LS. Because previous research revealed that Lynch patients have an increased vascular network in the oral mucosa, we hypothesized that increased vascularization of LS-associated adenomas is the cause of better detection with virtual chromoendoscopy. Patients and methods In this pilot study, patients with LS having a proven germline mutation were selected from two tertiary referral hospitals and non-LS patients from an outpatient colonoscopy center. Adenomas from patients with LS were exactly matched in size and histology with adenomas from non-LS patients. Initial adenoma diagnosis was confirmed by a specialist pathologist. All adenomas were stained with CD31 and adenomatous tissue was annotated by the specialist pathologist. Image analysis of CD31-positive microvessel density was conducted using FIJI software. Results Colonoscopy of 63 patients with LS and 24 non-LS patients provided 40 adenomas that could be exactly matched in size and histology. In image-analysis, the CD31-positive microvessel density (2.49 % vs. 2.47 %, P  = 0.96), the average size of CD31-positive structures (514 µm 2 vs. 523 µm 2 , P  = 0.26) nor the amount of vascular structures per mm 2 (183 vs. 176, P  = 0.50) differed between adenomas of LS patients and non-Lynch patients. Conclusion The outcomes of this pilot case-control study did not provide further insights into the mechanism of increased adenoma detection in LS patients using virtual chromoendoscopy techniques.

12.
Cancer Prev Res (Phila) ; 11(7): 403-412, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29685877

RESUMO

About 5% of colorectal adenomas are estimated to progress to colorectal cancer. However, it is important to identify which adenomas actually carry a high risk of progression, because these serve as intermediate endpoints, for example, in screening programs. In clinical practice, adenomas with a size of ≥10 mm, villous component and/or high-grade dysplasia, called advanced adenomas, are considered high risk, although solid evidence for this classification is lacking. Specific DNA copy number changes are associated with adenoma-to-carcinoma progression. We set out to determine the prevalence of cancer-associated events (CAE) in advanced and nonadvanced adenomas. DNA copy number analysis was performed on archival tissues from three independent series of, in total, 297 adenomas (120 nonadvanced and 177 advanced) using multiplex ligation-dependent probe amplification or low-coverage whole-genome DNA sequencing. Alterations in two or more CAEs were considered to mark adenomas as high risk. Two or more CAEs were overall present in 25% (95% CI, 19.0-31.8) of advanced adenomas; 23% (11/48), 36% (12/33), and 23% (22/96) of the advanced adenomas in series 1, 2, and 3, respectively, and 1.7% (1/58) and 4.8% (3/62) of the nonadvanced adenomas, in series 1 and 2, respectively. The majority of advanced adenomas do not show CAEs, indicating that only a subset of these lesions is to be considered high risk. Nonadvanced adenomas have very low prevalence of CAEs, although those with CAEs should be considered high risk as well. Specific DNA copy number alterations may better reflect the true progression risk than the advanced adenoma phenotype. Cancer Prev Res; 11(7); 403-12. ©2018 AACR.


Assuntos
Adenoma/genética , Carcinoma/genética , Neoplasias Colorretais/genética , Variações do Número de Cópias de DNA , Adenoma/patologia , Idoso , Carcinoma/patologia , Colonoscopia , Neoplasias Colorretais/patologia , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Estudos Retrospectivos , Sequenciamento Completo do Genoma
13.
Ann Intern Med ; 167(12): 855-866, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29159365

RESUMO

BACKGROUND: The fecal immunochemical test (FIT) for detecting hemoglobin is used widely for noninvasive colorectal cancer (CRC) screening, but its sensitivity leaves room for improvement. OBJECTIVE: To identify novel protein biomarkers in stool that outperform or complement hemoglobin in detecting CRC and advanced adenomas. DESIGN: Case-control study. SETTING: Colonoscopy-controlled referral population from several centers. PARTICIPANTS: 315 stool samples from one series of 12 patients with CRC and 10 persons without colorectal neoplasia (control samples) and a second series of 81 patients with CRC, 40 with advanced adenomas, and 43 with nonadvanced adenomas, as well as 129 persons without colorectal neoplasia (control samples); 72 FIT samples from a third independent series of 14 patients with CRC, 16 with advanced adenomas, and 18 with nonadvanced adenomas, as well as 24 persons without colorectal neoplasia (control samples). MEASUREMENTS: Stool samples were analyzed by mass spectrometry. Classification and regression tree (CART) analysis and logistic regression analyses were performed to identify protein combinations that differentiated CRC or advanced adenoma from control samples. Antibody-based assays for 4 selected proteins were done on FIT samples. RESULTS: In total, 834 human proteins were identified, 29 of which were statistically significantly enriched in CRC versus control stool samples in both series. Combinations of 4 proteins reached sensitivities of 80% and 45% for detecting CRC and advanced adenomas, respectively, at 95% specificity, which was higher than that of hemoglobin alone (P < 0.001 and P = 0.003, respectively). Selected proteins could be measured in small sample volumes used in FIT-based screening programs and discriminated between CRC and control samples (P < 0.001). LIMITATION: Lack of availability of antibodies prohibited validation of the top protein combinations in FIT samples. CONCLUSION: Mass spectrometry of stool samples identified novel candidate protein biomarkers for CRC screening. Several protein combinations outperformed hemoglobin in discriminating CRC or advanced adenoma from control samples. Proof of concept that such proteins can be detected with antibody-based assays in small sample volumes indicates the potential of these biomarkers to be applied in population screening. PRIMARY FUNDING SOURCE: Center for Translational Molecular Medicine, International Translational Cancer Research Dream Team, Stand Up to Cancer (American Association for Cancer Research and the Dutch Cancer Society), Dutch Digestive Foundation, and VU University Medical Center.


Assuntos
Neoplasias Colorretais/diagnóstico , Detecção Precoce de Câncer/métodos , Fezes/química , Adenoma/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/análise , Estudos de Casos e Controles , Colonoscopia , Feminino , Humanos , Modelos Logísticos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Proteínas/análise , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
14.
PLoS One ; 12(5): e0174768, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28481899

RESUMO

BACKGROUND: One prominent event associated with colorectal adenoma-to-carcinoma progression is genomic instability. Approximately 85% of colorectal cancer cases exhibit chromosomal instability characterized by accumulation of chromosome copy number aberrations (CNAs). Adenomas with gain of chromosome 8q, 13q, and/or 20q are at high risk of progression to cancer. Tumor progression is also associated with expansion of the extracellular matrix (ECM) and the activation of non-malignant cells within the tumor stroma. The glycoproteins versican and lumican are overexpressed at the mRNA level in colon carcinomas compared to adenomas, and are associated with the formation of tumor stroma. PURPOSE: The aim of this study was to characterize versican and lumican protein expression in tumor progression and investigate their association with CNAs commonly associated with adenoma-to-carcinoma progression. METHODS: Tissue microarrays were constructed with colon adenomas and carcinomas that were characterized for MSI-status and DNA copy number gains of chromosomes 8q, 13q and 20q. Sections were immunohistochemically stained for lumican and versican. Protein expression levels were evaluated using digitized slides, and scores were finally dichotomized into a positive or negative score per sample. RESULTS: Lumican and versican expression were both observed in neoplastic cells and in the tumor stroma of colon adenomas and carcinomas. Lumican expression was more frequently present in epithelial cells of carcinomas than adenomas (49% versus 18%; P = 0.0001) and in high-risk adenomas and carcinomas combined compared to low-risk adenomas (43% versus 16%; P = 0.005). Versican staining in the tumor stroma was more often present in high-risk adenomas combined with carcinomas compared to low-risk adenomas (57% versus 36%; P = 0.03) and was associated with the presence of gain of 13q (71% versus 44%; P = 0.04). CONCLUSION: Epithelial lumican and stromal versican protein expression are increased during colorectal adenoma-to-carcinoma progression.


Assuntos
Adenoma/metabolismo , Carcinoma/metabolismo , Neoplasias Colorretais/metabolismo , Lumicana/metabolismo , Versicanas/metabolismo , Adenoma/patologia , Carcinoma/patologia , Instabilidade Cromossômica , Neoplasias Colorretais/patologia , Progressão da Doença , Humanos , Lumicana/genética , Versicanas/genética
15.
EuPA Open Proteom ; 11: 11-15, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29900106

RESUMO

Extracellular vesicles (EVs) are cell-secreted membrane vesicles enclosed by a lipid bilayer derived from endosomes or from the plasma membrane. Since EVs are released into body fluids, and their cargo includes tissue-specific and disease-related molecules, they represent a rich source for disease biomarkers. However, standard ultracentrifugation methods for EV isolation are laborious, time-consuming, and require high inputs. Ghosh and co-workers recently described an isolation method utilizing Heat Shock Protein (HSP)-binding peptide Vn96 to aggregate HSP-decorated EVs, which can be performed at small 'miniprep' scale. Based on microscopic, immunoblot, and RNA sequencing analyses this method compared well with ultracentrifugation-mediated EV isolation, but a detailed proteomic comparison was lacking. Therefore, we compared both methods using label-free proteomics of replicate EV isolations from HT-29 cell-conditioned medium. Despite a 30-fold different scale (ultracentrifugation: 60 ml/Vn96-mediated aggregation: 2 ml) both methods yielded comparable numbers of identified proteins (3115/3085), with similar reproducibility of identification (72.5%/75.5%) and spectral count-based quantification (average CV: 31%/27%). EV fractions obtained with either method contained established EV markers and proteins linked to vesicle-related gene ontologies. Thus, Vn96 peptide-mediated aggregation is an advantageous, simple and rapid approach for EV isolation from small biological samples, enabling high-throughput analysis in a biomarker discovery setting.

16.
Oncotarget ; 6(28): 26278-90, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26172302

RESUMO

Colorectal cancer (CRC) is the third most prevalent cancer type worldwide with a mortality rate of approximately 50%. Elevated cell-surface expression of truncated carbohydrate structures such as Tn antigen (GalNAcα-Ser/Thr) is frequently observed during tumor progression. We have previously demonstrated that the C-type lectin macrophage galactose-type lectin (MGL), expressed by human antigen presenting cells, can distinguish healthy tissue from CRC through its specific recognition of Tn antigen. Both MGL binding and oncogenic BRAF mutations have been implicated in establishing an immunosuppressive microenvironment. Here we aimed to evaluate whether MGL ligand expression has prognostic value and whether this was correlated to BRAF(V600E) mutation status. Using a cohort of 386 colon cancer patients we demonstrate that high MGL binding to stage III tumors is associated with poor disease-free survival, independent of microsatellite instability or adjuvant chemotherapy. In vitro studies using CRC cell lines showed an association between MGL ligand expression and the presence of BRAF(V600E). Administration of specific BRAF(V600E) inhibitors resulted in decreased expression of MGL-binding glycans. Moreover, a positive correlation between induction of BRAF(V600E) and MGL binding to epithelial cells of the gastrointestinal tract was found in vivo using an inducible BRAF(V600E) mouse model. We conclude that the BRAF(V600E) mutation induces MGL ligand expression, thereby providing a direct link between oncogenic transformation and aberrant expression of immunosuppressive glycans. The strong prognostic value of MGL ligands in stage III colon cancer patients, i.e. when tumor cells disseminate to lymph nodes, further supports the putative immune evasive role of MGL ligands in metastatic disease.


Assuntos
Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/genética , Lectinas Tipo C/metabolismo , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Neoplasias Colorretais/terapia , Progressão da Doença , Intervalo Livre de Doença , Feminino , Predisposição Genética para Doença , Células HT29 , Humanos , Estimativa de Kaplan-Meier , Ligantes , Masculino , Camundongos Transgênicos , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Fenótipo , Modelos de Riscos Proporcionais , Transdução de Sinais , Fatores de Tempo , Resultado do Tratamento , Evasão Tumoral , Regulação para Cima
17.
Am J Clin Pathol ; 141(5): 630-8, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24713733

RESUMO

OBJECTIVES: Immunohistochemistry is an important extension to clinical information and morphology, and prevails as an invaluable tool for establishing a correct cancer diagnosis in clinical diagnostic pathology. The applicability of immunohistochemistry is limited by the availability of validated cell- and cancer-type specific antibodies, rendering an unmet need to discover, test, and validate novel markers. The SATB2 protein is selectively expressed in glandular cells from the lower gastrointestinal tract and expression is retained in a large majority of primary and metastatic colorectal cancers. METHODS: We analyzed the expression of SATB2 in all clinical cases (n = 840), in which immunohistochemistry for detection of CK20 was deemed necessary for a final diagnosis. RESULTS: SATB2 showed a high sensitivity (93%) and specificity (77%) to determine a cancer of colorectal origin and in combination with CK7 and CK20, the specificity increased to 100%. CONCLUSIONS: We conclude that SATB2 provides a new and advantageous supplement for clinical differential diagnostics.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Fatores de Transcrição/metabolismo , Adenocarcinoma/diagnóstico , Adenocarcinoma/patologia , Idoso , Feminino , Humanos , Imuno-Histoquímica/métodos , Queratina-20/metabolismo , Queratina-7/metabolismo , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Sensibilidade e Especificidade
18.
J Proteomics ; 99: 26-39, 2014 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-24418523

RESUMO

Colorectal cancer (CRC) is a major health problem. Biomarkers associated with molecular changes in cancer cells can aid early detection, diagnosis, prognosis, therapy selection, and disease monitoring. Tumor tissue secretomes are a rich source of candidate biomarkers. To identify CRC protein biomarkers, secretomes of four pairs of human CRC tissue and patient-matched normal colon tissue samples, and secretomes of five CRC cell lines were analyzed by GeLC-MS/MS. Subsequent data analysis was based on label-free spectral counting, Ingenuity Pathway Analysis, Secretome/SignalP, STRING and Cytoscape, resulting in 2703 protein identifications in the tissue secretomes, of which 409 proteins were significantly more present in CRC samples than in controls. Biomarker selection of 76 candidates was based on consistent and abundant over-representation in cancer- compared to control-secretomes, and presumed neoplastic origin. Overlap analysis with previously obtained datasets revealed 21 biomarkers suited for early detection of CRC. Immunohistochemistry confirmed overexpression in CRC of one candidate marker (MCM5). In conclusion, a human reference dataset of 76 candidate biomarkers was identified for which we illustrate that combination with existing pre-clinical datasets allows pre-selection of biomarkers for blood- or stool-based assays to support clinical management of CRC. Further dedicated validation studies are required to demonstrate their clinical applicability. BIOLOGICAL SIGNIFICANCE: Tissue secretome proteomes are a rich source of candidate biomarkers. Several secretome proteome datasets have been obtained from pre-clinical in vitro and in vivo colorectal cancer (CRC) model systems, yielding promising CRC biomarkers obtained under well-defined experimentally controlled conditions. However, which of these biomarker proteins are actually secreted by human CRC samples was not known. To our knowledge, this is the first study that directly compares secretome proteomes from clinically relevant human CRC tissues to patient-matched normal colon tissues. We identified 76 human CRC protein biomarkers that may facilitate blood-based or stool-based assay development to support clinical management of CRC. Overlap analysis with datasets from well-defined pre-clinical studies helps to determine what clinical application suits these human CRC biomarkers best, i.e. early detection, diagnosis, prognosis, therapy selection, and/or disease monitoring of CRC. This is demonstrated for a CRC mouse model dataset, revealing 21 human CRC biomarkers suited for early detection of CRC.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/metabolismo , Perfilação da Expressão Gênica , Proteínas de Neoplasias/metabolismo , Proteoma/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Células CACO-2 , Neoplasias Colorretais/patologia , Bases de Dados de Proteínas , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade
19.
Biochim Biophys Acta ; 1844(5): 1034-43, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24361553

RESUMO

BACKGROUND: Altered nuclear and genomic structure and function are hallmarks of cancer cells. Research into nuclear proteins in human tissues could uncover novel molecular processes in cancer. Here, we examine biochemical tissue fractions containing chromatin-binding (CB) proteins in the context of colorectal cancer (CRC) progression. METHODS: CB protein-containing fractions were biochemically extracted from human colorectal tissues, including carcinomas with chromosomal instability (CIN), carcinomas with microsatellite instability (MIN), and adenomas. The CB proteins were subjected to label-free LC-MS/MS and the data were analyzed by bioinformatics. RESULTS: Over 1700 proteins were identified in the CB fraction from colonic tissues, including 938 proteins associated with nuclear annotation. Of the latter, 169 proteins were differential between adenomas and carcinomas. In this adenoma-versus-carcinoma comparison, apart from specific changes in components of the splicing and protein translational machineries, we also identified significant changes in several proteins associated with chromatin-directed functions. Furthermore, several key cell cycle proteins as well as those involved in cellular stress were increased, whereas specific components of chromosome segregation and DNA recombination/repair systems were decreased. CONCLUSIONS: Our study identifies proteomic changes at the subnuclear level that are associated with CRC and may be further investigated. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge.


Assuntos
Adenoma/metabolismo , Biomarcadores Tumorais/metabolismo , Cromatina/metabolismo , Neoplasias Colorretais/metabolismo , Proteínas de Neoplasias/metabolismo , Proteômica/métodos , Adenoma/diagnóstico , Cromatina/genética , Cromatografia Líquida , Neoplasias Colorretais/diagnóstico , Ontologia Genética , Humanos , Instabilidade de Microssatélites , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Frações Subcelulares , Espectrometria de Massas em Tandem
20.
Proteome Sci ; 11(1): 17, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23617947

RESUMO

BACKGROUND: SDS-PAGE followed by in-gel digestion (IGD) is a popular workflow in mass spectrometry-based proteomics. In GeLC-MS/MS, a protein lysate of a biological sample is separated by SDS-PAGE and each gel lane is sliced in 5-20 slices which, after IGD, are analyzed by LC-MS/MS. The database search results for all slices of a biological sample are combined yielding global protein identification and quantification for each sample. In large scale GeLC-MS/MS experiments the manual processing steps including washing, reduction and alkylation become a bottleneck. Here we introduce the whole gel (WG) procedure where, prior to gel slice cutting, the processing steps are carried out on the whole gel. RESULTS: In two independent experiments human HCT116 cell lysate and mouse tumor tissue lysate were separated by 1D SDS PAGE. In a back to back comparison of the IGD procedure and the WG procedure, both protein identification (>80% overlap) and label-free protein quantitation (R2=0.94) are highly similar between procedures. Triplicate analysis of the WG procedure of both HCT116 cell lysate and formalin-fixed paraffin embedded (FFPE) tumor tissue showed identification reproducibility of >88% with a CV<20% on protein quantitation. CONCLUSIONS: The whole gel procedure allows for reproducible large-scale differential GeLC-MS/MS experiments, without a prohibitive amount of manual processing and with similar performance as conventional in-gel digestion. This procedure will especially enable clinical proteomics for which GeLC-MS/MS is a popular workflow and sample numbers are relatively high.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...