Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cytogenet ; 9(1): 69, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27610202

RESUMO

BACKGROUND: Since non-invasive prenatal testing (NIPT) in maternal blood became available, we evaluated which chromosome aberrations found in our cohort of fetuses with an enlarged NT in the first trimester of pregnancy (tested with SNP microarray) could be detected by NIPT as well. METHOD: 362 fetuses were referred for cytogenetic testing due to an enlarged NT (≥3.5 mm). Chromosome aberrations were investigated using QF-PCR, karyotyping and whole genome SNP array. RESULTS: After invasive testing a chromosomal abnormality was detected in 137/362 (38 %) fetuses. 100/362 (28 %) cases concerned trisomy 21, 18 or 13, 25/362 (7 %) an aneuploidy of sex chromosomes and 3/362 (0.8 %) triploidy. In 6/362 (1.6 %) a pathogenic structural unbalanced chromosome aberration was seen and in 3/362 (0.8 %) a susceptibility locus for neurodevelopmental disorders was found. We estimated that in 2-10 % of fetuses with enlarged NT a chromosome aberration would be missed by current NIPT approaches. CONCLUSION: Based on our cohort of fetuses with enlarged NT we may conclude that NIPT, depending on the approach, will miss chromosome aberrations in a significant percentage of pregnancies. Moreover all abnormal NIPT results require confirmatory studies with invasive testing, which will delay definitive diagnosis in ca. 30 % of patients. These figures are important for pretest counseling enabling pregnant women to make informed choices on the prenatal test. Larger cohorts of fetuses with an enlarged NT should be investigated to assess the additional diagnostic value of high resolution array testing for this indication.

2.
Eur J Hum Genet ; 24(5): 645-51, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26328504

RESUMO

To evaluate the diagnostic value of single-nucleotide polymorphism (SNP) array testing in 1033 fetuses with ultrasound anomalies we investigated the prevalence and genetic nature of pathogenic findings. We reclassified all pathogenic findings into three categories: causative findings; unexpected diagnoses (UD); and susceptibility loci (SL) for neurodevelopmental disorders. After exclusion of trisomy 13, 18, 21, sex-chromosomal aneuploidy and triploidies, in 76/1033 (7.4%) fetuses a pathogenic chromosome abnormality was detected by genomic SNP array: in 19/1033 cases (1.8%) a microscopically detectable abnormality was found and in 57/1033 (5.5%) fetuses a pathogenic submicroscopic chromosome abnormality was detected. 58% (n=44) of all these pathogenic chromosome abnormalities involved a causative finding, 35% (n=27) a SL for neurodevelopmental disorder, and 6% (n=5) a UD of an early-onset untreatable disease. In 0.3% of parental samples an incidental pathogenic finding was encountered. Our results confirm that a genomic array should be the preferred first-tier technique in fetuses with ultrasound anomalies. All UDs involved early-onset diseases, which is beneficial for the patients to know. It also seems that UDs occur at a comparable frequency among microscopic and submicroscopic pathogenic findings. SL were more often detected than in pregnancies without ultrasound anomalies.


Assuntos
Aberrações Cromossômicas , Transtornos Cromossômicos/diagnóstico , Feto/diagnóstico por imagem , Polimorfismo de Nucleotídeo Único , Amniocentese , Transtornos Cromossômicos/genética , Feminino , Feto/patologia , Testes Genéticos , Humanos , Achados Incidentais , Análise de Sequência com Séries de Oligonucleotídeos , Gravidez , Ultrassonografia Pré-Natal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...