Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38541579

RESUMO

A favorable environment for fungi colonization in building materials' surfaces can emerge when certain hygrothermal conditions occur. Thus, reducing fungal growth susceptibility is of major interest. Furthermore, if the integration of bio-wastes is performed in parallel with the development of innovative materials for this purpose, a more sustainable and environmentally friendly material can be obtained. In this study, the fungal susceptibility of lime mortars incorporating almond-shell powder (ASP) microparticles (2 and 4%, wt.-wt. in relation to the binder content) was evaluated. The particle-dispersion technique was employed to prepare the bio-waste introduced in the mixtures. The fungal susceptibility of ASP samples was compared with nanotitania (n-TiO2) with recognized antifungal properties. Mechanical strength, water absorption, and wettability tests were also performed for a better characterization of the composites. Although the addition of 2% ASP led to mechanical properties reduction, an increase in the compressive and flexural strength resulted for 4% of the ASP content. Difficulties in fungal growth were observed for the samples incorporating ASP. No fungal development was detected in the mortar with 2% of ASP, which may be correlated with an increase in the surface hydrophobic behavior. Furthermore, mortars with ASP revealed a reduction in water absorption by capillarity ability, especially with 4% content, suggesting changes in the microstructure and pore characteristics. The results also demonstrated that an improvement in the physical and mechanical properties of the lime mortars can be achieved when ASP microparticles are previously subjected to dispersion techniques.

2.
ACS Appl Mater Interfaces ; 15(27): 32301-32312, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37379238

RESUMO

Renewable energy sources require efficient energy storage systems. Lithium-ion batteries stand out among those systems, but safety and cycling stability problems still need to be improved. This can be achieved by the implementation of solid polymer electrolytes (SPE) instead of the typically used separator/electrolyte system. Thus, ternary SPEs have been developed based on poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene), P(VDF-TrFE-CFE) as host polymers, clinoptilolite (CPT) zeolite added to stabilize the battery cycling performance, and ionic liquids (ILs) (1-butyl-3-methylimidazolium thiocyanate ([BMIM][SCN])), 1-methyl-1-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([PMPyr][TFSI]) or lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), incorporated to increase the ionic conductivity. The samples were processed by doctor blade with solvent evaporation at 160 °C. The nature of the polymer matrix and fillers affect the morphology and mechanical properties of the samples and play an important role in electrochemical parameters such as ionic conductivity value, electrochemical window stability, and lithium-transference number. The best ionic conductivity (4.2 × 10-5 S cm-1) and lithium transference number (0.59) were obtained for the PVDF-HFP-CPT-[PMPyr][TFSI] sample. Charge-discharge battery tests at C/10 showed excellent battery performance with values of 150 mAh g-1 after 50 cycles, regardless of the polymer matrix and IL used. In the rate performance tests, the best SPE was the one based on the P(VDF-TrFE-CFE) host polymer, with a discharge value at C-rate of 98.7 mAh g-1, as it promoted ionic dissociation. This study proves for the first time the suitability of P(VDF-TrFE-CFE) as SPE in lithium-ion batteries, showing the relevance of the proper selection of the polymer matrix, IL type, and lithium salt in the formulation of the ternary SPE, in order to optimize solid-state battery performance. In particular, the enhancement of the ionic conductivity provided by the IL and the effect of the high dielectric constant polymer P(VDF-TrFE-CFE) in improving battery cyclability in a wide range of discharge rates must be highlighted.

3.
ACS Appl Energy Mater ; 6(10): 5239-5248, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37234969

RESUMO

Solid polymer electrolytes (SPEs) will allow improving safety and durability in next-generation solid-state lithium-ion batteries (LIBs). Within the SPE class, ternary composites are a suitable approach as they provide high room-temperature ionic conductivity and excellent cycling and electrochemical stability. In this work, ternary SPEs based on poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) as a polymer host, clinoptilolite (CPT) zeolite, and 1-butyl-3-methylimidazolium thiocyanate ([Bmim][SCN])) ionic liquid (IL) as fillers were produced by solvent evaporation at different temperatures (room temperature, 80, 120, and 160 °C). Solvent evaporation temperature affects the morphology, degree of crystallinity, and mechanical properties of the samples as well as the ionic conductivity and lithium transference number. The highest ionic conductivity (1.2 × 10-4 S·cm-1) and lithium transference number (0.66) have been obtained for the SPE prepared at room temperature and 160 °C, respectively. Charge-discharge battery tests show the highest value of discharge capacity of 149 and 136 mAh·g-1 at C/10 and C/2 rates, respectively, for the SPE prepared at 160 °C. We conclude that the fine control of the solvent evaporation temperature during the preparation of the SPE allows us to optimize solid-state battery performance.

4.
Polymers (Basel) ; 14(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35956612

RESUMO

Water pollution due to global economic activity is one of the greatest environmental concerns, and many efforts are currently being made toward developing materials capable of selectively and efficiently removing pollutants and contaminants. A series of ß-ketoenamine covalent organic frameworks (COFs) have been synthesized, by reacting 1,3,5-triformylphloroglucinol (TFP) with different C2-functionalized and nonfunctionalized diamines, in order to evaluate the influence of wall functionalization and pore size on the adsorption capacity toward dye and heavy metal pollutants. The obtained COFs were characterized by different techniques. The adsorption of methylene blue (MB), which was used as a model for the adsorption of pharmaceuticals and dyes, was initially evaluated. Adsorption studies showed that -NO2 and -SO3H functional groups were favorable for MB adsorption, with TpBd(SO3H)2-COF [100%], prepared between TFP and 4,4'-diamine- [1,1'-biphenyl]-2,2'-disulfonic acid, achieving the highest adsorption capacity (166 ± 13 mg g-1). The adsorption of anionic pollutants was less effective and decreased, in general, with the increase in -SO3H and -NO2 group content. The effect of ionic interactions on the COF performance was further assessed by carrying out adsorption experiments involving metal ions. Isotherms showed that nonfunctionalized and functionalized COFs were better described by the Langmuir and Freundlich sorption models, respectively, confirming the influence of functionalization on surface heterogeneity. Sorption kinetics experiments were better adjusted according to a second-order rate equation, confirming the existence of surface chemical interactions in the adsorption process. These results confirm the influence of selective COF functionalization on adsorption processes and the role of functional groups on the adsorption selectivity, thus clearly demonstrating the potential of this new class of materials in the efficient and selective capture and removal of pollutants in aqueous solutions.

5.
Front Plant Sci ; 13: 890647, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860538

RESUMO

Classically, vicariant phenomena have been essentially identified on the basis of biogeographical and ecological data. Here, we report unequivocal evidences that demonstrate that a physical-chemical characterization of the epicuticular waxes of the surface of plant leaves represents a very powerful strategy to get rich insight into vicariant events. We found vicariant similarity between Cercis siliquastrum L. (family Fabaceae, subfamily Cercidoideae) and Ceratonia siliqua L. (family Fabaceae, subfamily Caesalpinoideae). Both taxa converge in the Mediterranean basin (C. siliquastrum on the north and C. siliqua across the south), in similar habitats (sclerophyll communities of maquis) and climatic profiles. These species are the current representation of their subfamilies in the Mediterranean basin, where they overlap. Because of this biogeographic and ecological similarity, the environmental pattern of both taxa was found to be very significant. The physical-chemical analysis performed on the epicuticular waxes of C. siliquastrum and C. siliqua leaves provided relevant data that confirm the functional proximity between them. A striking resemblance was found in the epicuticular waxes of the abaxial surfaces of C. siliquastrum and C. siliqua leaves in terms of the dominant chemical compounds (1-triacontanol (C30) and 1-octacosanol (C28), respectively), morphology (intricate network of randomly organized nanometer-thick and micrometer-long plates), wettability (superhydrophobic character, with water contact angle values of 167.5 ± 0.5° and 162 ± 3°, respectively), and optical properties (in both species the light reflectance/absorptance of the abaxial surface is significantly higher/lower than that of the adaxial surface, but the overall trend in reflectance is qualitatively similar). These results enable us to include for the first time C. siliqua in the vicariant process exhibited by C. canadensis L., C. griffithii L., and C. siliquastrum.

6.
ACS Appl Bio Mater ; 5(6): 2556-2566, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35537179

RESUMO

Silk from Bombyx mori is one of the most exciting materials in nature. The apparently simple arrangement of its two major components─two parallel filaments of silk fibroin (SF) coated by a common sericin (SS) sheath─provides a combination of mechanical and surface properties that can protect the moth during its most vulnerable phase, the pupal stage. Here, we recapitulate the topology of native silk fibers but shape them into three-dimensional porous constructs using an unprecedented design strategy. We demonstrate, for the first time, the potential of these macroporous silk foams as dermal patches for wound protection and for the controlled delivery of Rifamycin (Rif), a model antibiotic. The method implies (i) removing SS from silk fibers; (ii) shaping SF solutions into macroporous foams via ice-templating; (iii) stabilizing the SF macroporous foam in a methanolic solution of Rif; and (iv) coating Rif-loaded SF foams with a SS sheath. The resulting SS@SF foams exhibit water wicking capacity and accommodate up to ∼20% deformation without detaching from a skin model. The antibacterial behavior of Rif-loaded SS@SF foams against Staphylococcus aureus on agar plates outperforms that of SF foams (>1 week and 4 days, respectively). The reassembly of natural materials as macroporous foams─illustrated here for the reconstruction of silk-based materials─can be extended to other multicomponent natural materials and may play an important role in applications where controlled release of molecules and fluid transport are pivotal.


Assuntos
Fibroínas , Sericinas , Animais , Antibacterianos/farmacologia , Biomimética , Gelo , Seda
7.
Nano Lett ; 21(23): 9853-9861, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34807626

RESUMO

Animal testing is often criticized due to ethical issues and complicated translation of the results obtained to the clinical stage of drug development. Existing alternative models for nanopharmaceutical testing still have many limitations and do not significantly decrease the number of animals used. We propose a simple, bioinspired in vitro model for nanopharmaceutical drug testing based on the decellularized spinach leaf's vasculature. This system is similar to human arterioles and capillaries in terms of diameter (300-10 µm) and branching. The model has proven its suitability to access the maneuverability of magnetic nanoparticles, particularly those composed of Fe3O4. Moreover, the thrombosis has been recreated in the model's vasculature. We have tested and compared the effects of both a single-chain urokinase plasminogen activator (scuPA) and a magnetically controlled nanocomposite prepared by heparin-mediated cross-linking of scuPA with Fe3O4 nanoparticles. Compositions were tested both in static and flow conditions.


Assuntos
Pesquisa Biomédica/métodos , Nanomedicina , Spinacia oleracea , Animais , Encéfalo/metabolismo , Humanos , Folhas de Planta/metabolismo , Spinacia oleracea/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/farmacologia
8.
ACS Appl Mater Interfaces ; 13(41): 48889-48900, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34636238

RESUMO

The demand for more efficient energy storage devices has led to the exponential growth of lithium-ion batteries. To overcome the limitations of these systems in terms of safety and to reduce environmental impact, solid-state technology emerges as a suitable approach. This work reports on a three-component solid polymer electrolyte system based on poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP), the ionic liquid 1-butyl-3-methylimidazolium thiocyanate ([BMIM][SCN]), and clinoptilolite zeolite (CPT). The influences of the preparation method and of the dopants on the electrolyte stability, ionic conductivity, and battery performance were studied. The developed electrolytes show an improved room temperature ionic conductivity (1.9 × 10-4 S cm-1), thermal stability (up to 300 °C), and mechanical stability. The corresponding batteries exhibit an outstanding room temperature performance of 160.3 mAh g-1 at a C/15-rate, with a capacity retention of 76% after 50 cycles. These results represent a step forward in a promising technology aiming the widespread implementation of solid-state batteries.

9.
Polymers (Basel) ; 12(5)2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32456102

RESUMO

This work reports on the development of bending actuators based on poly(l-lactic acid) (PLLA)/ionic liquid (IL) blends, through the incorporation of 40% wt. of the 1-ethyl-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Emim][TFSI]) IL. The films, obtained by solvent casting at room temperature and 50 °C, were subjected to several post-thermal treatments at 70, 90, 120 and 140 °C, in order to modify the crystallinity of the films. The influence of the drying temperature and of [Emim][TFSI] blending on the morphological, structural, mechanical and electrical properties of the composite materials were studied. The IL induced the formation of a porous surface independently of the processing conditions. Moreover, the [Emim][TFSI] dopant and the post-thermal treatments at 70 °C promoted an increase of the degree of crystallinity of the samples. No significant changes were observed in the degree of crystallinity and Young Modulus for samples with thermal treatment between 70 and 140 °C. The viability of the developed high ionic conductive blends for applications as soft actuators was evaluated. A maximum displacement of 1.7 mm was achieved with the PLLA/[Emim][TFSI] composite prepared at 50 °C and thermally treated at 140 °C, for an applied voltage of 10 Vpp, at a frequency of 100 mHz. This work highlights interesting avenues for the use of PLLA in the field of actuators.

10.
Small ; 16(28): e1907661, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32462808

RESUMO

Non-Newtonian nanofluids present outstanding features in terms of energy transfer and conductivity with high application in numerous areas. In this work, non-Newtonian nanofluids based on carbon dots (Cdots) functionalized with ionic liquids (ILs) are developed. The nanofluids are produced using a simple, single-step method where the raw materials for the Cdots synthesis are glucose and waste biomass (chitin from crab shells). The use of ILs as both reaction media and functionalization molecules allows for the development of a new class of nanofluids, where the ILs on the Cdots surface represent the base-fluid. Here, the well-known benign IL 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) and a novel home-made IL (1-tosylate-3-methyl-imidazolium triflate) [Tmi][Trif] are used. The nanofluids obtained from both substrates show, apart from high conductivity and viscosity, light absorption, and good wettability, an appealing thermal sensitivity behavior. This thermal sensitivity is preserved even when applied as thin films on glass slides and can be boosted using the surface plasmon resonance effect. The results reported demonstrate that the new Cdots/IL-based nanofluids constitute a versatile and cost-effective route for achieving high-performance thermosensitive non-Newtonian sustainable nanofluids with tremendous potential for the energy coatings sector and heat transfer film systems.


Assuntos
Líquidos Iônicos , Carbono , Condutividade Elétrica , Imidazóis , Viscosidade
11.
Biomacromolecules ; 20(11): 4107-4116, 2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31573794

RESUMO

Bombyx mori L. silk fibroin (SF) is widely used in different areas due to its ability to form durable and resilient materials with notable mechanical properties. However, in some of these applications the dissolution of SF is required, and this is not often straightforward due to its inability to be dissolved in the majority of common solvents. This work reports a novel approach to dissolve SF using 40 wt % aqueous tetrabutylammonium hydroxide, TBAOH(aq), at mild temperature. A thorough rheological study combined with small-angle X-ray scattering is presented to correlate the SF state in solution with changes in the rheological parameters. The scattering data suggest that the SF conformation in TBAOH(aq) is close to a random coil, possibly having some compact domains linked with flexible random chains. The radius of gyration (Rg) and the molecular weight (Mw) were estimated to be ca. 17.5 nm and 450 kDa, respectively, which are in good agreement with previous works. Nevertheless, a lower Mw value was deduced from rheometry (i.e., 321 kDa) demonstrating a low degree of depolymerization during dissolution in comparison to other harsh processes. The transition from a dilute to a semidilute regime coincides with the estimated critical concentration and is marked by the presence of a shear-thinning behavior in the flow curves, violation of the empirical Cox-Merz rule, and an upward increase in the activation energy. This work paves the way toward the development of advanced high-tech SF-based materials.


Assuntos
Fibroínas/química , Compostos de Amônio Quaternário/química , Soluções , Solventes/química , Animais , Bombyx/química , Conformação Molecular , Reologia , Solubilidade , Soluções/química , Temperatura , Água/química
13.
ACS Omega ; 3(9): 10811-10822, 2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-30320252

RESUMO

New mesoporous silk fibroin (SF)/silica hybrids were processed via a one-pot soft and energy-efficient sol-gel chemistry and self-assembly from a silica precursor, an acidic or basic catalyst, and the ionic liquid 1-butyl-3-methylimidazolium chloride, acting as both solvent and mesoporosity-inducer. The as-prepared materials were obtained as slightly transparent-opaque, amorphous monoliths, easily transformed into powders, and stable up to ca. 300 °C. Structural data suggest the formation of a hexagonal mesostructure with low range order and apparent surface areas, pore volumes, and pore radii of 205-263 m2 g-1, 0.16-0.19 cm3 g-1, and 1.2-1.6 nm, respectively. In all samples, the dominating conformation of the SF chains is the ß-sheet. Cytotoxicity/bioactivity resazurin assays and fluorescence microscopy demonstrate the high viability of MC3T3 pre-osteoblasts to indirect (≥99 ± 9%) and direct (78 ± 2 to 99 ± 13%) contact with the SF/silica materials. Considering their properties and further improvements, these systems are promising candidates to be explored in bone tissue engineering. They also offer excellent prospects as electrolytes for solid-state electrochemical devices, in particular for fuel cells.

14.
ACS Appl Mater Interfaces ; 10(6): 5385-5394, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29369609

RESUMO

Battery separators based on silk fibroin (SF) have been prepared aiming at improving the environmental issues of lithium-ion batteries. SF materials with three different morphologies were produced: membrane films (SF-F), sponges prepared by lyophilization (SF-L), and electrospun membranes (SF-E). The latter materials presented a suitable porous three-dimensional microstructure and were soaked with a 1 M LiPF6 electrolyte. The ionic conductivities for SF-L and SF-E were 1.00 and 0.32 mS cm-1 at 20 °C, respectively. A correlation between the fraction of ß-sheet conformations and the ionic conductivity was observed. The electrochemical performance of the SF-based materials was evaluated by incorporating them in cathodic half-cells with C-LiFePO4. The discharge capacities of SF-L and SF-E were 126 and 108 mA h g-1, respectively, at the C/2-rate and 99 and 54 mA h g-1, respectively, at the 2C-rate. Furthermore, the capacity retention and capacity fade of the SF-L membrane after 50 cycles at the 2C-rate were 72 and 5%, respectively. These electrochemical results show that a high percentage of ß-sheet conformations were of prime importance to guarantee excellent cycling performance. This work demonstrates that SF-based membranes are appropriate separators for the production of environmentally friendlier lithium-ion batteries.


Assuntos
Fibroínas/química , Fontes de Energia Elétrica , Eletrodos , Íons , Lítio
16.
ACS Appl Mater Interfaces ; 9(14): 12540-12546, 2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28317371

RESUMO

Luminescent solar concentrators (LSCs) appear as candidates to enhance the performance of photovoltaic (PV) cells and contribute to reduce the size of PV systems, decreasing, therefore, the amount of material needed and thus the cost associated with energy conversion. One way to maximize the device performance is to explore near-infrared (NIR)-emitting centers, resonant with the maximum optical response of the most common Si-based PV cells. Nevertheless, very few examples in the literature demonstrate the feasibility of fabricating LSCs emitting in the NIR region. In this work, NIR-emitting LSCs are reported using silicon 2,3-naphthalocyanine bis(trihexylsilyloxide) (SiNc or NIR775) immobilized in an organic-inorganic tri-ureasil matrix (t-U(5000)). The photophysical properties of the SiNc dye incorporated into the tri-ureasil host closely resembled those of SiNc in tetrahydrofuran solution (an absolute emission quantum yield of ∼0.17 and a fluorescence lifetime of ∼3.6 ns). The LSC coupled to a Si-based PV device revealed an optical conversion efficiency of ∼1.5%, which is among the largest values known in the literature for NIR-emitting LSCs. The LSCs were posteriorly coupled to a Si-based commercial PV cell, and the synergy between the t-U(5000) and SiNc molecules enabled an effective increase in the external quantum efficiency of PV cells, exceeding 20% in the SiNc absorption region.

17.
Front Chem ; 5: 131, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29379781

RESUMO

Amine-functionalized bridged silsesquioxanes (BSs) were synthesized from bis[(3-trimethoxysilyl)propyl] amine via a solvent-mediated route. BS-1 and BS-2 were obtained at neutral pH with sub- and stoichiometric amounts of water, respectively, and high tetrahydrofuran content. BS-3 was prepared with hyperstoichiometric water concentration, high tetrahydrofuran content, and hydrochloric acid. BS-4 was synthesized with hyperstoichiometric water concentration, high ethanol content, and sodium hydroxide. BS-1 and BS-2 were produced as transparent films, whereas BS-3 and BS-4 formed white powders. Face-to-face stacking of flat or folded lamellae yielded quasi-hydrophobic platelets with emission quantum yields of 0.05 ± 0.01 (BS-1 and BS-2) or superhydrophilic onion-like nanoparticles with exciting emission quantum yields of 0.38 ± 0.03 (BS-3) and 0.33 ± 0.04 (BS-4), respectively. The latter two values are the largest ever reported for amine-functionalized siloxane-based hybrids lacking aromatic groups. Fast Grotthus proton hopping between = [Formula: see text]/ = NH groups (BS-3) and = N-/ = NH groups (BS-4), promoted by H+ and OH- ions, respectively, and aided by short amine-amine contacts provided by the onion-like morphology, account for this unique optical behavior.

18.
J Phys Chem B ; 117(46): 14529-43, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24144280

RESUMO

A lamellar bilayer hierarchically structured amide cross-linked alkyl/siloxane hybrid matrix (mono-amidosil, m-A(14)) was doped with a wide concentration range of potassium triflate (KCF3SO3), magnesium triflate (Mg(CF3SO3)2), and europium triflate (Eu(CF3SO3)3). In the K(+)-, Mg(2+)-, and Eu(3+)-based samples with n ≥ 5, 20, and 60 (where n is the molar ratio of amide C═O groups per cation), respectively, the original lamellar structure of m-A(14) coexists with a new lamellar phase with lower interlamellar distance. The texture of the mono-amidosils doped with K(+), Mg(2+), and Eu(3+) ions mimics cabbage leaves, foliated schist, and sea sponges, respectively. In the three series of materials, the cations bond to the oxygen atoms of the amide carbonyl groups. The amide-amide hydrogen-bonded array of m-A(14) is less perturbed by the inclusion of KCF3SO3 and Mg(CF3SO3)2 than by the incorporation of Eu(CF3SO3)3. The degree of ionic association is low for n ≥ 20. The cations coordinate to the oxygen atoms of the triflate ions, forming contact ion pairs at higher salt content. In the Mg(CF3SO3)2- and Eu(CF3SO3)3-containing materials with n = 5 and 10, respectively, crystalline salt is formed. The structural changes undergone by the alkyl chains of selected mono-amidosils in a heating/cooling cycle are reversible, are time-independent, and exhibit two distinct hysteresis domains, one associated with the order/disorder phase transition of the original lamellar bilayer structure of m-A(14) and the second one associated with the order/disorder phase transition of the new lamellar bilayer structure formed in the presence of the salts.

19.
Chem Soc Rev ; 40(2): 536-49, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21180708

RESUMO

Research on organic-inorganic hybrid materials containing trivalent lanthanide ions (Ln(3+)) is a very active field that has rapidly shifted in the last couple of years to the development of eco-friendly, versatile and multifunctional systems, stimulated by the challenging requirements of technological applications spanning domains as diverse as optics, environment, energy, and biomedicine. This tutorial review offers a general overview of the myriad of advanced Ln(3+)-based organic-inorganic hybrid materials recently synthesised, which may be viewed as a major innovation in areas of phosphors, lighting, integrated optics and optical telecommunications, solar cells, and biomedicine.

20.
Acta Crystallogr Sect E Struct Rep Online ; 66(Pt 12): o3243-4, 2010 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-21589531

RESUMO

The title compound, C(12)H(18)N(6)O(6), was synthesized via nucleophilic substitution by reacting 2,4,6-trichloro-1,3,5-triazine with glycine methyl ester hydro-chloride in reflux (dried toluene) under anhydrous atmosphere. Individual mol-ecules self-assemble via strong N-H⋯O hydrogen bonds into supra-molecular double tapes running parallel to the [010] crystallographic direction. The close packing of supra-molecular tapes is mediated by geometrical reasons in tandem with a number of weaker N-H⋯O and C-H⋯N hydrogen-bonding inter-actions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...