Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Eur J Neurosci ; 59(1): 154-173, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38057955

RESUMO

Autism spectrum disorder (ASD) is a diverse group of neurodevelopmental conditions with complex origins. Individuals with ASD present various neurobiological abnormalities, including an altered immune response in the central nervous system and other tissues. Animal models like the C58/J inbred mouse strain are used to study biological characteristics of ASD. This strain is considered an idiopathic autism model because of its demonstrated reduced social preference and repetitive behaviours. Notably, C58/J mice exhibit alterations in dendritic arbour complexity, density and dendritic spines maturation in the hippocampus and prefrontal cortex (PFC), but inflammatory-related changes have not been explored in these mice. In this study, we investigated proinflammatory markers in the hippocampus and PFC of adult male C58/J mice. We discovered elevated levels of interferon gamma (IFN-γ) and monocyte chemoattractant protein 1 (MCP-1) in the hippocampus, suggesting increased inflammation, alongside a reduction in the anti-inflammatory enzyme arginase 1 (ARG1). Conversely, the PFC displayed reduced levels of TNF-α and MCP-1. Microglial analysis revealed higher levels of transmembrane protein 119 (TMEM119) and increased microglial density in a region-specific manner of the autistic-like mice, particularly in the PFC and hippocampus. Additionally, an augmented expression of the fractalkine receptor CX3CR1 was observed in the hippocampus and PFC of C58/J mice. Microglial morphological analysis shows no evident changes in the hippocampus of mice with autistic-like behaviours versus wild-type strain. These region-specific changes can contribute to modulate processes like inflammation or synaptic pruning in the C58/J mouse model of idiopathic autism.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Camundongos , Masculino , Animais , Transtorno Autístico/metabolismo , Transtorno do Espectro Autista/metabolismo , Microglia/metabolismo , Camundongos Endogâmicos , Córtex Pré-Frontal/metabolismo , Hipocampo/metabolismo , Inflamação/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
2.
Cell Signal ; 92: 110246, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35033667

RESUMO

Medulloblastoma (MB) is the most common and aggressive pediatric intracranial tumor. Estrogen receptor ß (ERß) expression correlates with MB development and its phosphorylation modifies its transcriptional activity in a ligand-dependent or independent manner. Using in silico tools, we have identified several residues in ERß protein as potential targets of protein kinases C (PKCs) α and δ. Using Daoy cells, we observed that PKCα and PKCδ associate with ERß and induce its phosphorylation. The activation of ERß promotes MB cells proliferation and invasion, and PKCs downregulation dysregulates these steroid receptor mediated processes. Our data suggest that these kinases may play a crucial role in the regulation of the ERß transcriptional activity. Overexpression of both PKCα and PKCδ in MB biopsies samples supports their relevance in MB progression.


Assuntos
Neoplasias Cerebelares , Receptor beta de Estrogênio , Meduloblastoma , Proteína Quinase C-alfa/metabolismo , Proteína Quinase C-delta/metabolismo , Proteína Quinase C , Linhagem Celular Tumoral , Proliferação de Células , Criança , Receptor alfa de Estrogênio , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Humanos , Meduloblastoma/genética , Meduloblastoma/metabolismo
3.
Front Cell Neurosci ; 15: 726501, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616277

RESUMO

Autism spectrum disorder (ASD) has a broad range of neurobiological characteristics, including alterations in dendritic spines, where approximately 90% of excitatory synapses occur. Therefore, changes in their number or morphology would be related to atypical brain communication. The C58/J inbred mouse strain displays low sociability, impaired communication, and stereotyped behavior; hence, it is considered among the animal models suitable for the study of idiopathic autism. Thus, this study aimed to evaluate the dendritic spine differences in the hippocampus and the prefrontal cortex of C58/J mice. We found changes in the number of spines and morphology in a brain region-dependent manner: a subtle decrease in spine density in the prefrontal cortex, higher frequency of immature phenotype spines characterized by filopodia-like length or small morphology, and a lower number of mature phenotype spines with mushroom-like or wide heads in the hippocampus. Moreover, an in silico analysis showed single nucleotide polymorphisms (SNPs) at genes collectively involved in regulating structural plasticity with a likely association with ASD, including MAP1A (Microtubule-Associated Protein 1A), GRM7 (Metabotropic Glutamate Receptor, 7), ANKRD11 (Ankyrin Repeat Domain 11), and SLC6A4 (Solute Carrier Family 6, member 4), which might support the relationship between the C58/J strain genome, an autistic-like behavior, and the observed anomalies in the dendritic spines.

4.
Onco Targets Ther ; 14: 3757-3768, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34168461

RESUMO

INTRODUCTION: Astrocytomas are the most common and aggressive primary brain tumors, and they are classified according to the degree of malignancy on a scale of I to IV, in which grade I is the least malignant and grade IV the highest. Many factors are related to astrocytomas progression as progesterone receptor (PR), whose transcriptional activity could be regulated by phosphorylation by protein kinase C alpha (PKCα) at the residue Ser400. Our aim was to investigate if PR phosphorylation together with PKCα expression could be used as a prognostic factor for astrocytomas malignancy. METHODS: By immunofluorescence, we detected the content of PKCα, PR and its phosphorylation at Ser400 in 46 biopsies from Mexican patients with different astrocytoma malignancy grades; by bioinformatic tools using TCGA data, we evaluated the expression of PR and PKCα mRNA according to astrocytoma malignancy grades. For all statistical analyses, significance was p<0.05. RESULTS: We detected a positive correlation between the tumor grade and the content of PKCα, PR and its phosphorylation at Ser400, as well as the intracellular colocalization of these proteins. Interestingly, using an in silico assay, we found that the PR and PKCα expression at mRNA level has an inverse ratio with astrocytomas tumor grade. DISCUSSION: These results indicate that PR and its phosphorylation at Ser400 site, as well as PKCα and their colocalization, could be considered as possible malignancy biomarkers for astrocytomas grades I-IV.

5.
Cells ; 10(4)2021 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-33916643

RESUMO

Lysophosphatidic acid (LPA) induces a wide range of cellular processes and its signaling is increased in several cancers including glioblastoma (GBM), a high-grade astrocytoma, which is the most common malignant brain tumor. LPA1 receptor is expressed in GBM cells and its signaling pathways activate protein kinases C (PKCs). A downstream target of PKC, involved in GBM progression, is the intracellular progesterone receptor (PR), which can be phosphorylated by this enzyme, increasing its transcriptional activity. Interestingly, in GBM cells, PKCα isotype translocates to the nucleus after LPA stimulation, resulting in an increase in PR phosphorylation. In this study, we determined that LPA1 receptor activation induces protein-protein interaction between PKCα and PR in human GBM cells; this interaction increased PR phosphorylation in serine400. Moreover, LPA treatment augmented VEGF transcription, a known PR target. This effect was blocked by the PR selective modulator RU486; also, the activation of LPA1/PR signaling promoted migration of GBM cells. Interestingly, using TCGA data base, we found that mRNA expression of LPAR1 increases according to tumor malignancy and correlates with a lower survival in grade III astrocytomas. These results suggest that LPA1/PR pathway regulates GBM progression.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Proteína Quinase C-alfa/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Receptores de Progesterona/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Lisofosfolipídeos/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sobrevida , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Drug Des Devel Ther ; 14: 1799-1811, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32494122

RESUMO

INTRODUCTION: Cancer stem cells (CSCs) drive the initiation, maintenance, and therapy response of breast tumors. CD49f is expressed in breast CSCs and functions in the maintenance of stemness. Thus, blockade of CD49f is a potential therapeutic approach for targeting breast CSCs. In the present study, we aimed to repurpose drugs as CD49f antagonists. MATERIALS AND METHODS: We performed consensus molecular docking using a subdomain of CD49f that is critical for heterodimerization and a collection of pharmochemicals clinically tested. Molecular dynamics simulations were employed to further characterize drug-target binding. Using MDA-MB-231 cells, we evaluated the effects of potential CD49f antagonists on 1) cell adhesion to laminin; 2) mammosphere formation; and 3) cell viability. We analyzed the effects of the drug with better CSC-selectivity on the activation of CD49f-downstream signaling by Western blot (WB) and co-immunoprecipitation. Expressions of the stem cell markers CD44 and SOX2 were analyzed by flow cytometry and WB, respectively. Transactivation of SOX2 promoter was evaluated by luciferase reporter assays. Changes in the number of CSCs were assessed by limiting-dilution xenotransplantation. RESULTS: Pranlukast, a drug used to treat asthma, bound to CD49f in silico and inhibited the adhesion of CD49f+ MDA-MB-231 cells to laminin, indicating that it antagonizes CD49f-containing integrins. Molecular dynamics analysis showed that pranlukast binding induces conformational changes in CD49f that affect its interaction with ß1-integrin subunit and constrained the conformational dynamics of the heterodimer. Pranlukast decreased the clonogenicity of breast cancer cells on mammosphere formation assay but had no impact on the viability of bulk tumor cells. Brief exposure of MDA-MB-231 cells to pranlukast altered CD49f-dependent signaling, reducing focal adhesion kinase (FAK) and phosphatidylinositol 3-kinase (PI3K) activation. Further, pranlukast-treated cells showed decreased CD44 and SOX2 expression, SOX2 promoter transactivation, and in vivo tumorigenicity, supporting that this drug reduces the frequency of CSC. CONCLUSION: Our results support the function of pranlukast as a CD49f antagonist that reduces the CSC population in triple-negative breast cancer cells. The pharmacokinetics and toxicology of this drug have already been established, rendering a potential adjuvant therapy for breast cancer patients.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Cromonas/farmacologia , Integrina alfa6/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antineoplásicos/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Cromonas/química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Células Tumorais Cultivadas
7.
Arch Med Res ; 50(4): 187-196, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31499479

RESUMO

BACKGROUND: Ovarian steroid hormones are involved in modulating the growth of glioblastomas (the most common, aggressive, and lethal brain tumor) through the interaction with their intracellular receptors. Activation of sex hormone receptors is involved in glioblastomas progression. Tibolone (TIB) is a selective tissue estrogenic activity regulator widely prescribed to treat menopausal symptoms and to prevent bone lost. The effects of TIB on the growth of glioblastoma are unknown. AIM OF THE STUDY: To evaluate the effects of TIB on cell number, migration, and invasion of two derived human glioblastoma cell lines (U251 MG and U87), as well as the role of this steroid in estrogen and progesterone receptors activity and content. METHODS: U251-MG and U87 human glioblastoma cell lines were grown with different doses of TIB. The number of cells was determined and migration and invasion tests were carried out. Protein expression was performed by Western blot. RESULTS: We observed that TIB (10 nM) increased the number of cells by inducing proliferation with no effects on cell migration or invasion. The increase in cell proliferation induced by TIB was blocked by estrogen (ERs) or progesterone receptor (PRs) antagonists, ICI 182, 780 and RU 486, suggesting that these receptors mediate proliferating actions of TIB; TIB also modified the content of ERs and PRs by increasing ER-α, ER-ß, and PR-B, while decreased PR-A. CONCLUSION: Our results suggest that TIB increases cell number and proliferation of human glioblastoma cells through the regulation of ERs and PRs actions and content.


Assuntos
Antineoplásicos Hormonais/uso terapêutico , Receptor alfa de Estrogênio/metabolismo , Glioblastoma/tratamento farmacológico , Norpregnenos/uso terapêutico , Receptores de Progesterona/metabolismo , Antineoplásicos Hormonais/farmacologia , Linhagem Celular Tumoral , Feminino , Glioblastoma/patologia , Humanos , Norpregnenos/farmacologia
8.
Pharmacol Rep ; 71(3): 535-544, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31026757

RESUMO

BACKGROUND: Breast cancer is a neoplastic disease with high morbidity and mortality in women worldwide. Breast cancer stem cells (CSCs) have a significant function in tumor growth, recurrence, and therapeutic resistance. Thus, CSCs have been pointed as targets of new therapies for breast cancer. Herein, we aimed to repurpose certain drugs as breast CSC-targeting agents. METHODS: We compared a consensus breast CSC signature with the transcriptomic changes that were induced by over 1300 bioactive compounds using Connectivity Map. The effects of the selected drugs on SOX2 promoter transactivation, SOX2 expression, viability, clonogenicity, and ALDH activity in breast cancer cells were analyzed by luciferase assay, western blot, MTT assay, mammosphere formation assay, and ALDEFLUOR® test, respectively. Gene Set Enrichment Analysis (GSEA) was performed using the gene expression data from mammary tumors of mice that were treated with lovastatin. RESULTS: Five drugs (fasudil, pivmecillinam, ursolic acid, 16,16-dimethylprostaglandin E2, and lovastatin) induced signatures that correlated negatively with the query CSC signature. In vitro, lovastatin inhibited SOX2 promoter transactivation, and reduced the efficiency of mammosphere formation and the percentage of ALDH+ cells. Mevalonate mitigated the effects of lovastatin, suggesting that the targeting of CSCs by lovastatin was mediated by the inhibition of its reported target, 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR). By GSEA, lovastatin downregulated genes that are involved in stemness and invasiveness in mammary tumors, corroborating our in vitro findings. CONCLUSION: Lovastatin is a breast CSC-targeting drug. The inhibition of HMGCR might develop new adjuvant therapeutic strategies for breast tumors.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Lovastatina/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Sistemas de Liberação de Medicamentos/métodos , Feminino , Humanos , Camundongos , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Fatores de Transcrição SOXB1/genética , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genética , Transcriptoma/genética
9.
Int J Biochem Cell Biol ; 110: 91-102, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30849522

RESUMO

Lysophosphatidic acid (LPA) is a ubiquitous lysophospholipid that induces a wide range of cellular processes such as wound healing, differentiation, proliferation, migration, and survival. LPA signaling is increased in a number of cancers. In Glioblastoma (GBM), the most aggressive brain tumor, autotaxin the enzyme that produces LPA and its receptor LPA1 are overexpressed. LPA1 is preferentially couple to Gαq proteins in these tumors that in turn activates PKCs. PKCs are involved in many cellular processes including proliferation and metastasis. In this study, we aimed to determine if a classical PKC (α isozyme), could be activated through LPA1 in GBM cell lines and if this activation impacts on cell number. We found that LPA1 induces PKCα translocation to the nucleus, but not to the cell membrane after LPA treatment and the cell number diminished when LPA1/PKCα signaling was blocked, suggesting a relevant role of LPA1 and PKCα in GBM growth.


Assuntos
Núcleo Celular/metabolismo , Glioblastoma/patologia , Proteína Quinase C-alfa/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Transporte Ativo do Núcleo Celular , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Diester Fosfórico Hidrolases/metabolismo
10.
FEBS Open Bio ; 9(1): 137-147, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30652081

RESUMO

We have previously reported that the absence of inhibins results in impaired dendritic cell (DC) maturation and function, leading to decreased T cell activation and diminished delayed-type hypersensitivity responses. Here, we investigated the role of inhibins in peripheral regulatory T cell (Treg) induction in vitro and in vivo. Inhibin deficient (Inhα-/-) mice showed an increased percentage of peripherally induced Tregs in colonic lamina propria and mesenteric lymph nodes, compared to Inhα+/+ mice, which correlated with increased expression of PD-L1 in CD103+ and CD8α+ DCs. Lipopolysaccharide-stimulated bone marrow-derived and ex vivo spleen- and lymph node-purified CD11c+ Inhα-/- DCs induced higher Tregs in vitro. Moreover, in vivo anti-DEC205-ovalbumin (OVA) DC targeting of mice with adoptively transferred OVA-specific T cells showed enhanced induced peripheral Treg conversion in Inhα-/- mice. These data identify inhibins as key regulators of peripheral T cell tolerance.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Inibinas/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Animais , Células Cultivadas , Células Dendríticas/citologia , Inibinas/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
11.
Biochem Biophys Res Commun ; 494(1-2): 82-87, 2017 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-29050936

RESUMO

TGF-ß type III receptor (TßRIII) is a co-receptor for TGFß family members required for high-affinity binding of these ligands to their receptors, potentiating their cellular functions. TGF-ßs, Bone Morphogenetic Proteins (BMP2/4) and Inhibins/Activins regulate different checkpoints during T cell differentiation. We have previously reported that TßRIII modulates T cell development by protecting developing thymocytes from apoptosis, however the role of this co-receptor in peripheral lymphocytes still remains elusive. Here we describe a detailed characterization of TßRIII expression in murine and human lymphocyte subpopulations demonstrating that this co-receptor is significantly expressed in T but not B lymphocytes and among them, preferentially expressed on naïve and central memory T cells. TßRIII was upregulated after TCR stimulation, in parallel to other early activation markers. In contrast, natural and induced Tregs downregulated TßRIII in association with FoxP3 upregulation. Finally, anti-TßRIII blocking experiments demonstrated that TßRIII promotes TGFß-dependent iTreg conversion in vitro, and suggest that this co-receptor may be involved in modulating peripheral T cell tolerance and could be considered as a potential target to boost T cell immune responses.


Assuntos
Proteoglicanas/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Linfócitos T Reguladores/imunologia , Animais , Regulação para Baixo , Fatores de Transcrição Forkhead/metabolismo , Humanos , Memória Imunológica , Técnicas In Vitro , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteoglicanas/antagonistas & inibidores , Proteoglicanas/genética , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Receptores de Fatores de Crescimento Transformadores beta/genética , Transdução de Sinais , Linfócitos T Reguladores/classificação , Linfócitos T Reguladores/metabolismo , Regulação para Cima
12.
PLoS One ; 11(12): e0167813, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27936218

RESUMO

Inhibins are members of the TGFß superfamily, which regulate many cellular processes including differentiation, proliferation, survival and apoptosis. Although initially described as hormones regulating the hypothalamus-pituitary-gonadal axis, based on their ability to antagonize Activins, our group has recently reported that they play a role in thymocyte differentiation and survival, as well as in thymic stromal cell maturation and nTreg generation. Here, we used Inhibin knock out mice (Inhα-/-) to investigate the role of Inhibins in peripheral dendritic cell maturation and function. We first demonstrated that LPS treated Inhα+/+ bone marrow derived dendritic cells (BMDC) were capable to produce significant levels of Inhibin A. Interestingly, Inhα-/- BMDC showed reduced MHCII and CD86 upregulation and increased PD-L1 expression in response to LPS compared to Inhα+/+, which correlated with reduced ability to induce proliferation of allogeneic T cells. The "semi-mature" phenotype displayed by Inhα-/- mBMDC correlated with increased levels of IL-10 and slightly decreased IL-6 production after LPS stimulation. In addition, Inhα-/- mBMDC showed impaired migration towards CCL19 and CCL21, assessed by in vitro chemotaxis and in vivo competitive homing experiments, despite their normal CCR7 expression. Furthermore, in vivo LPS-induced DC maturation was also diminished in Inhα-/- mice, specially within the LC (CD207+ CD11b+ CD103-) subpopulation. Finally, analysis of delayed type hypersensitivity responses in Inhα-/- mice, showed reduced ear swelling as a result of reduced cellular infiltration in the skin, correlating with impaired homing of CD207+ DCs to the draining lymph nodes. In summary, our data demonstrate for the first time that Inhibins play a key role in peripheral DC maturation and function, regulating the balance between immunity and tolerance.


Assuntos
Diferenciação Celular/fisiologia , Células Dendríticas/citologia , Inibinas/fisiologia , Animais , Células Dendríticas/metabolismo , Hipersensibilidade Tardia , Interleucina-10/metabolismo , Camundongos , Camundongos Knockout , Fosforilação , Linfócitos T/citologia
13.
J Immunol Res ; 2015: 837859, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25973437

RESUMO

Inhibins and Activins are members of the TGF-ß superfamily that regulate the differentiation of several cell types. These ligands were initially identified as hormones that regulate the hypothalamus-pituitary-gonadal axis; however, increasing evidence has demonstrated that they are key regulators in the immune system. We have previously demonstrated that Inhibins are the main Activin ligands expressed in the murine thymus and that they regulate thymocyte differentiation, promoting the DN3-DN4 transition and the selection of SP thymocytes. As Inhibins are mainly produced by thymic stromal cells, which also express Activin receptors and Smad proteins, we hypothesized that Inhibins might play a role in stromal cell differentiation and function. Here, we demonstrate that, in the absence of Inhibins, thymic conventional dendritic cells display reduced levels of MHC Class II (MHCII) and CD86. In addition, the ratio between cTECs and mTECs was affected, indicating that mTEC differentiation was favoured and cTEC diminished in the absence of Inhibins. These changes appeared to impact thymocyte selection leading to a decreased selection of CD4SP thymocytes and increased generation of natural regulatory T cells. These findings demonstrate that Inhibins tune the T cell selection process by regulating both thymocyte and stromal cell differentiation.


Assuntos
Células Dendríticas/imunologia , Inibinas/metabolismo , Células Estromais/citologia , Linfócitos T Reguladores/citologia , Timócitos/citologia , Ativinas/metabolismo , Animais , Antígeno B7-2/imunologia , Antígeno B7-2/metabolismo , Células Epiteliais/citologia , Feminino , Hematopoese , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Inibinas/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Knockout , Linfócitos T Reguladores/imunologia
14.
PLoS One ; 8(6): e65947, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23805194

RESUMO

JC virus (JCV), a common human polyomavirus, is the etiological agent of the demyelinating disease, progressive multifocal leukoencephalopathy (PML). In addition to its role in PML, studies have demonstrated the transforming ability of the JCV early protein, T-antigen, and its association with some human cancers. JCV infection occurs in childhood and latent virus is thought to be maintained within the bone marrow, which harbors cells of hematopoietic and non-hematopoietic lineages. Here we show that non-hematopoietic mesenchymal stem cells (MSCs) isolated from the bone marrow of JCV T-antigen transgenic mice give rise to JCV T-antigen positive cells when cultured under neural conditions. JCV T-antigen positive cells exhibited neural crest characteristics and demonstrated p75, SOX-10 and nestin positivity. When cultured in conditions typical for mesenchymal cells, a population of T-antigen negative cells, which did not express neural crest markers arose from the MSCs. JCV T-antigen positive cells could be cultured long-term while maintaining their neural crest characteristics. When these cells were induced to differentiate into neural crest derivatives, JCV T-antigen was downregulated in cells differentiating into bone and maintained in glial cells expressing GFAP and S100. We conclude that JCV T-antigen can be stably expressed within a fraction of bone marrow cells differentiating along the neural crest/glial lineage when cultured in vitro. These findings identify a cell population within the bone marrow permissible for JCV early gene expression suggesting the possibility that these cells could support persistent viral infection and thus provide clues toward understanding the role of the bone marrow in JCV latency and reactivation. Further, our data provides an excellent experimental model system for studying the cell-type specificity of JCV T-antigen expression, the role of bone marrow-derived stem cells in the pathogenesis of JCV-related diseases and the opportunities for the use of this model in development of therapeutic strategies.


Assuntos
Antígenos Virais de Tumores/metabolismo , Vírus JC/genética , Crista Neural/metabolismo , Animais , Antígenos Virais de Tumores/genética , Células da Medula Óssea/citologia , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Transgênicos , Nestina/metabolismo , Crista Neural/citologia , Neuroglia/citologia , Neuroglia/metabolismo , Osteogênese , Proteínas S100/metabolismo , Fatores de Transcrição SOXE/metabolismo
15.
Rev. venez. oncol ; 21(3): 174-182, jul.-sept. 2009.
Artigo em Espanhol | LILACS | ID: lil-549451

RESUMO

Las células madre oncogénicas constituyen una subpoblación de células tumorales que tienen la capacidad de auto-renovarse y de generar tumores heterogéneos en animales de experimentación. Estudios recientes han demostrado que las células madres oncogénicas juegan un papel central en la tumorigénesis, la progresión tumoral y la sensibilidad al tratamiento, lo que las convierte en blancos muy prometedores para el desarrollo de nuevas terapias antineoplásicas. En el caso particular del cáncer de mama estas células se descubrieron en el 2003. Tras su identificación, diversos estudios se enfocaron en identificar las actividades celulares que caracterizan a esta población, lo cual permitió saber que las células madres mamarias son más resistentes a la quimioterapia que el resto de las células tumorales. Al sobrevivir al tratamiento, estas pueden ser capaces de repoblar el tumor y producir recurrencia. El presente artículo tiene como objetivo resumir evidencia reciente que indica que tantos cambios en la expresión de transportadores de membranas como alteraciones en diversas vías de señalización participan en la quimiorresistencia de las células madre mamarias. Adicionalmente, esta revisión discute las posibles estrategias para vencer la resistencia terapéutica y lograr la erradicación de las células. Esas estrategias pueden ser la base para la generación de mejores terapias que prevengan la recurrencia de los tumores de mama.


The cancer stem cells are a subpopulation of tumor cells that display self renewal capability and generate heterogeneous tumors when injected into a experimentation animals. Recent studies have shown that stem cancer cells play a key role in the tumor development, progression, and treatment sensitivity, making cancer stem cells are very promising targets for the development of a new therapies for cancer. In the case of breast cancer, stem cells were discovered in year 2003. Since they identification, different studies have characterized the cell activities that distinguish this population. Now it is well known that breast cancer stem cells are more resistant to chemotherapy than the rest of the breast cancer cells. Given that cancer stem cells survive the treatment, they may be capable to repopulate the tumor, causing relapse. The present paper aims to summarize the recent evidence that indicates that changes in the expression of membrane transporters as well as alterations in various signaling pathways are involved in the generation of resistance in breast cancer stem cells. In addition, this review discusses the possible strategies to overcome drug resistance and to achieve the eradication of the cancer stem cells. These strategies may become the basis for the development of new therapies that block relapse in breast cancer.


Assuntos
Animais , Células-Tronco/ultraestrutura , Neoplasias Mamárias Experimentais/patologia , Neoplasias Mamárias Experimentais/tratamento farmacológico , Recidiva Local de Neoplasia/diagnóstico , Resistencia a Medicamentos Antineoplásicos , Neoplasias da Mama/patologia , Oncologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...