Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 12(4)2022 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-35454129

RESUMO

Physiological low oxygen (O2) concentration (<5%) favors erythroid development ex vivo. It is known that low O2 concentration, via the stabilization of hypoxia-induced transcription factors (HIFs), intervenes with Notch signaling in the control of cell fate. In addition, Notch activation is implicated in the regulation of erythroid differentiation. We test here if the favorable effects of a physiological O2 concentration (3%) on the amplification of erythroid progenitors implies a cooperation between HIFs and the Notch pathway. To this end, we utilized a model of early erythropoiesis ex vivo generated from cord blood CD34+ cells transduced with shHIF1α and shHIF2α at 3% O2 and 20% O2 in the presence or absence of the Notch pathway inhibitor. We observed that Notch signalization was activated by Notch2R−Jagged1 ligand interaction among progenitors. The inhibition of the Notch pathway provoked a modest reduction in erythroid cell expansion and promoted erythroid differentiation. ShHIF1α and particularly shHIF2α strongly impaired erythroid progenitors' amplification and differentiation. Additionally, HIF/NOTCH signaling intersects at the level of multipotent progenitor erythroid commitment and amplification of BFU-E. In that, both HIFs contribute to the expression of Notch2R and Notch target gene HES1. Our study shows that HIF, particularly HIF2, has a determining role in the early erythroid development program, which includes Notch signaling.


Assuntos
Células Precursoras Eritroides , Eritropoese , Diferenciação Celular , Células Cultivadas , Células Precursoras Eritroides/metabolismo , Eritropoese/genética , Sangue Fetal , Oxigênio/metabolismo
2.
Cytotherapy ; 18(12): 1543-1547, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27592406

RESUMO

Survival of ex vivo expanded hematopoietic stem cells (HSC) and progenitor cells is low with the standard cryopreservation procedure. We recently showed that the efficiency of cryopreservation of these cells may be greatly enhanced by adding a serum-free xeno-free culture medium (HP01 Macopharma), which improves the antioxidant and biochemical properties of the cryopreservation solution. Here we present the clinical-scale validation of this cryopreservation procedure. The hematopoietic cells expanded in clinical-scale cultures were cryopreserved applying the new HP01-based procedure. The viability, apoptosis rate and number of functional committed progenitors (methyl-cellulose colony forming cell test), short-term repopulating HSCs (primary recipient NSG mice) and long-term HSCs (secondary recipient NSG mice) were tested before and after thawing. The efficiency of clinical-scale procedure reproduced the efficiency of cryopreservation obtained earlier in miniature sample experiments. Furthermore, the full preservation of short- and long-term HSCs was obtained in clinical scale conditions. Because the results obtained in clinical-scale volume are comparable to our earlier results in miniature-scale cultures, the clinical-scale procedure should be considered validated. It allows cryopreservation of the whole ex vivo expanded culture content, conserving full short- and long-term HSC activity.


Assuntos
Criopreservação/métodos , Crioprotetores/farmacologia , Meios de Cultura/farmacologia , Sangue Fetal/citologia , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/citologia , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Camundongos , Camundongos SCID , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...