Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Calcium ; 117: 102839, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38134531

RESUMO

Ca2+ signaling is essential for cardiac contractility and excitability in heart function and remodeling. Intriguingly, little is known about the role of a new family of ion channels, the endo-lysosomal non-selective cation "two-pore channel" (TPCs) in heart function. Here we have used double TPC knock-out mice for the 1 and 2 isoforms of TPCs (Tpcn1/2-/-) and evaluated their cardiac function. Doppler-echocardiography unveils altered left ventricular (LV) systolic function associated with a LV relaxation impairment. In cardiomyocytes isolated from Tpcn1/2-/- mice, we observed a reduction in the contractile function with a decrease in the sarcoplasmic reticulum Ca2+ content and a reduced expression of various key proteins regulating Ca2+ stores, such as calsequestrin. We also found that two main regulators of the energy metabolism, AMP-activated protein kinase and mTOR, were down regulated. We found an increase in the expression of TPC1 and TPC2 in a model of transverse aortic constriction (TAC) mice and in chronically isoproterenol infused WT mice. In this last model, adaptive cardiac hypertrophy was reduced by Tpcn1/2 deletion. Here, we propose a central role for TPCs and lysosomes that could act as a hub integrating information from the excitation-contraction coupling mechanisms, cellular energy metabolism and hypertrophy signaling.


Assuntos
Canais de Cálcio , Canais de Dois Poros , Camundongos , Animais , Canais de Cálcio/metabolismo , Lisossomos/metabolismo , Transdução de Sinais , Camundongos Knockout , Cardiomegalia/metabolismo , NADP/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio
2.
Proc Natl Acad Sci U S A ; 120(7): e2213682120, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36745816

RESUMO

Oxytocin (OT) is a prominent regulator of many aspects of mammalian social behavior and stored in large dense-cored vesicles (LDCVs) in hypothalamic neurons. It is released in response to activity-dependent Ca2+ influx, but is also dependent on Ca2+ release from intracellular stores, which primes LDCVs for exocytosis. Despite its importance, critical aspects of the Ca2+-dependent mechanisms of its secretion remain to be identified. Here we show that lysosomes surround dendritic LDCVs, and that the direct activation of endolysosomal two-pore channels (TPCs) provides the critical Ca2+ signals to prime OT release by increasing the releasable LDCV pool without directly stimulating exocytosis. We observed a dramatic reduction in plasma OT levels in TPC knockout mice, and impaired secretion of OT from the hypothalamus demonstrating the importance of priming of neuropeptide vesicles for activity-dependent release. Furthermore, we show that activation of type 1 metabotropic glutamate receptors sustains somatodendritic OT release by recruiting TPCs. The priming effect could be mimicked by a direct application of nicotinic acid adenine dinucleotide phosphate, the endogenous messenger regulating TPCs, or a selective TPC2 agonist, TPC2-A1-N, or blocked by the antagonist Ned-19. Mice lacking TPCs exhibit impaired maternal and social behavior, which is restored by direct OT administration. This study demonstrates an unexpected role for lysosomes and TPCs in controlling neuropeptide secretion, and in regulating social behavior.


Assuntos
Canais de Cálcio , Ocitocina , Camundongos , Animais , Canais de Cálcio/metabolismo , Ocitocina/metabolismo , Cálcio/metabolismo , Camundongos Knockout , Lisossomos/metabolismo , NADP/metabolismo , Sinalização do Cálcio/fisiologia , Mamíferos/metabolismo
3.
EMBO Mol Med ; 14(5): e12860, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35298089

RESUMO

Duchenne muscular dystrophy (DMD) is characterized by progressive muscle degeneration. Two important deleterious features are a Ca2+ dysregulation linked to Ca2+ influxes associated with ryanodine receptor hyperactivation, and a muscular nicotinamide adenine dinucleotide (NAD+ ) deficit. Here, we identified that deletion in mdx mice of CD38, a NAD+ glycohydrolase-producing modulators of Ca2+ signaling, led to a fully restored heart function and structure, with skeletal muscle performance improvements, associated with a reduction in inflammation and senescence markers. Muscle NAD+ levels were also fully restored, while the levels of the two main products of CD38, nicotinamide and ADP-ribose, were reduced, in heart, diaphragm, and limb. In cardiomyocytes from mdx/CD38-/- mice, the pathological spontaneous Ca2+ activity was reduced, as well as in myotubes from DMD patients treated with isatuximab (SARCLISA® ) a monoclonal anti-CD38 antibody. Finally, treatment of mdx and utrophin-dystrophin-deficient (mdx/utr-/- ) mice with CD38 inhibitors resulted in improved skeletal muscle performances. Thus, we demonstrate that CD38 actively contributes to DMD physiopathology. We propose that a selective anti-CD38 therapeutic intervention could be highly relevant to develop for DMD patients.


Assuntos
Distrofia Muscular de Duchenne , ADP-Ribosil Ciclase 1 , Animais , Humanos , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético , Distrofia Muscular de Duchenne/genética , Miócitos Cardíacos/patologia , NAD/genética , NAD/uso terapêutico , NAD+ Nucleosidase/genética , Fenótipo
4.
FASEB J ; 33(5): 5823-5835, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30844310

RESUMO

Autism spectrum disorder (ASD) is characterized by early onset of behavioral and cognitive alterations. Low plasma levels of oxytocin (OT) have also been found in ASD patients; recently, a critical role for the enzyme CD38 in the regulation of OT release was demonstrated. CD38 is important in regulating several Ca2+-dependent pathways, but beyond its role in regulating OT secretion, it is not known whether a deficit in CD38 expression leads to functional modifications of the prefrontal cortex (PFC), a structure involved in social behavior. Here, we report that CD38-/- male mice show an abnormal cortex development, an excitation-inhibition balance shifted toward a higher excitation, and impaired synaptic plasticity in the PFC such as those observed in various mouse models of ASD. We also show that a lack of CD38 alters social behavior and emotional responses. Finally, examining neuromodulators known to control behavioral flexibility, we found elevated monoamine levels in the PFC of CD38-/- adult mice. Overall, our study unveiled major changes in PFC physiologic mechanisms and provides new evidence that the CD38-/- mouse could be a relevant model to study pathophysiological brain mechanisms of mental disorders such as ASD.-Martucci, L. L., Amar, M., Chaussenot, R., Benet, G., Bauer, O., de Zélicourt, A., Nosjean, A., Launay, J.-M., Callebert, J., Sebrié, C., Galione, A., Edeline, J.-M., de la Porte, S., Fossier, P., Granon, S., Vaillend, C., Cancela, J.-M., A multiscale analysis in CD38-/- mice unveils major prefrontal cortex dysfunctions.


Assuntos
ADP-Ribosil Ciclase 1/genética , ADP-Ribosil Ciclase 1/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Plasticidade Neuronal , Córtex Pré-Frontal/fisiopatologia , Aminas/metabolismo , Animais , Ansiedade , Transtorno do Espectro Autista/genética , Comportamento Animal , Tronco Encefálico , Cálcio/metabolismo , Medo , Regulação da Expressão Gênica , Genótipo , Imageamento por Ressonância Magnética , Masculino , Aprendizagem em Labirinto , Megalencefalia/fisiopatologia , Memória , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ocitocina/sangue , Polimorfismo de Nucleotídeo Único , Reflexo de Sobressalto , Fatores de Risco , Comportamento Social
5.
Neurobiol Dis ; 71: 325-33, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25167832

RESUMO

Duchenne muscular dystrophy (DMD) is a progressive neuromuscular disease caused by lack of dystrophin, a sub-sarcolemmal protein, which leads to dramatic muscle deterioration. We studied in mdx mice, the effects of oral administration of arginine butyrate (AB), a compound currently used for the treatment of sickle cell anemia in children, on cardiomyopathy, vertebral column deformation and electromyographic abnormalities. Monthly follow-up by echocardiography from the 8th month to the 14th month showed that AB treatment protected the mdx mice against drastic reduction (20-23%) of ejection fraction and fractional shortening, and also against the ≈20% ventricular dilatation and 25% cardiac hypertrophy observed in saline-treated mdx mice. The phenotypic improvement was corroborated by the decrease in serum CK level and by better fatigue resistance. Moreover, AB treatment protected against the progressive spinal deformity observed in mdx mice, another similarity with DMD patients. The value of the kyphosis index in AB-treated mice reached 94% of the value in C57BL/10 mice. Finally, axonal excitability parameters such as the membrane resting potential, the threshold and amplitude of the action potential, the absolute and relative refractory periods and the supernormal and subnormal periods, recorded from caudal and plantar muscles in response to excitability tests, that were modified in saline-treated mdx mice were not significantly changed, compared with wild-type animals, in AB-treated mdx mice. All of these results suggest that AB could be a potential treatment for DMD patients.


Assuntos
Antineoplásicos/uso terapêutico , Arginina/análogos & derivados , Axônios/efeitos dos fármacos , Butiratos/uso terapêutico , Cardiomiopatias/tratamento farmacológico , Cifose/tratamento farmacológico , Distrofias Musculares/patologia , Potenciais de Ação/efeitos dos fármacos , Animais , Arginina/uso terapêutico , Cardiomiopatias/etiologia , Modelos Animais de Doenças , Distrofina/genética , Eletrocardiografia , Cifose/etiologia , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Força Muscular/efeitos dos fármacos , Força Muscular/genética , Músculo Esquelético/fisiopatologia , Distrofias Musculares/complicações , Distrofias Musculares/genética , Índice de Gravidade de Doença , Fatores de Tempo , Tomografia Computadorizada por Raios X , Ureo-Hidrolases/metabolismo
6.
FASEB J ; 28(6): 2603-19, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24604079

RESUMO

A new approach to treating Duchenne muscular dystrophy was investigated by using the ester or amide covalent association of arginine [nitric oxide (NO) pathway] and butyrate [histone deacetylase (HDAC) inhibition] in mdx mice and patient myotubes. Two prodrugs were synthesized, and the beneficial effects on dystrophic phenotype were studied. Nerve excitability abnormalities detected in saline-treated mice were almost totally rescued in animals treated at low doses (50-100 mg/kg/d). Force and fatigue resistance were improved ≈60% and 3.5-fold, respectively, and the percentage of necrosis in heart sections was reduced ≈90% in the treated mice. A decrease of >50% in serum creatine kinase indicated an overall improvement in the muscles. Restoration of membrane integrity was studied directly by measuring the reduction (≈74%) of Evans blue incorporation in the limb muscles of the treated animals, the increase in utrophin level, and the normalization of lipid composition of the heart. In cultures of human myotubes (primary cells and cell line), both prodrugs and HDAC inhibitors increased by 2- to 4-fold the utrophin level, which was correctly localized at the membrane. ß-Dystroglycan and embryonic myosin protein levels were also increased. Finally, a 50% reduction in the number of spontaneous Ca(2+) spikes was observed after treatment with NO synthase substrate and HDAC inhibitors. Overall, the beneficial effects were obtained with doses 10 (in vivo) and 5 (in vitro) times lower than those of the salt formulation. Altogether, these data constitute proof of principle of the beneficial effects of low doses of arginine butyrate derivatives on muscular dystrophy, enhancing the NO pathway and inhibiting HDAC.


Assuntos
Arginina/análogos & derivados , Butiratos/uso terapêutico , Distrofia Muscular Animal/tratamento farmacológico , Distrofia Muscular de Duchenne/tratamento farmacológico , Animais , Arginina/uso terapêutico , Permeabilidade da Membrana Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Inibidores de Histona Desacetilases/farmacologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos mdx , Fibras Musculares Esqueléticas/efeitos dos fármacos , Força Muscular/efeitos dos fármacos , Músculos/efeitos dos fármacos , Músculos/fisiologia , Utrofina/metabolismo
7.
FASEB J ; 27(6): 2256-69, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23430975

RESUMO

As a strategy to treat Duchenne muscular dystrophy, we used arginine butyrate, which combines two pharmacological activities: nitric oxide pathway activation, and histone deacetylase inhibition. Continuous intraperitoneal administration to dystrophin-deficient mdx mice resulted in a near 2-fold increase in utrophin (protein homologous to dystrophin) in skeletal muscle, heart, and brain, accompanied by an improvement of the dystrophic phenotype in both adult and newborn mice (45 and 70% decrease in creatine kinase level, respectively; 14% increase in tidal volume, 30% decrease in necrotic area in limb and 23% increase in isometric force). Intermittent administration, as performed in clinical trials, was then used to reduce the frequency of injections and to improve safety. This also enhanced utrophin level around 2-fold (EC50=284 mg/ml) and alleviated the dystrophic phenotype (inverted grid and grip test performance near to wild-type values, creatine kinase level decreased by 50%). Skin biopsies were used to monitor treatment efficacy, instead of invasive muscle biopsies, and this could be done a few days after the start of treatment. A 2-fold increase in utrophin expression was also shown in cultured human myotubes. In vivo and in vitro experiments demonstrated that the drug combination acts synergistically. Together, these data constitute a proof of principle of the beneficial effects of arginine butyrate on muscular dystrophy.


Assuntos
Arginina/análogos & derivados , Butiratos/uso terapêutico , Distrofia Muscular Animal/tratamento farmacológico , Distrofia Muscular de Duchenne/tratamento farmacológico , Animais , Animais Recém-Nascidos , Arginina/administração & dosagem , Arginina/uso terapêutico , Butiratos/administração & dosagem , Células Cultivadas , Sinergismo Farmacológico , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular Animal/patologia , Distrofia Muscular Animal/fisiopatologia , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/fisiopatologia , Regulação para Cima/efeitos dos fármacos , Utrofina/genética
8.
Hum Mol Genet ; 21(10): 2263-76, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22343141

RESUMO

Dystrophin, the protein responsible for X-linked Duchenne muscular dystrophy (DMD), is normally expressed in both muscle and brain, which explains that its loss also leads to cognitive deficits. The utrophin protein, an autosomal homolog, is a natural candidate for dystrophin replacement in patients. Pharmacological upregulation of endogenous utrophin improves muscle physiology in dystrophin-deficient mdx mice, and represents a potential therapeutic tool that has the advantage of allowing delivery to various organs following peripheral injections. Whether this could alleviate cognitive deficits, however, has not been explored. Here, we first investigated basal expression of all utrophins and dystrophins in the brain of mdx mice and found no evidence for spontaneous compensation by utrophins. Then, we show that systemic chronic, spaced injections of arginine butyrate (AB) alleviate muscle alterations and upregulate utrophin expression in the adult brain of mdx mice. AB selectively upregulated brain utrophin Up395, while reducing expression of Up113 and Up71. This, however, was not associated with a significant improvement of behavioral functions typically affected in mdx mice, which include exploration, emotional reactivity, spatial and fear memories. We suggest that AB did not overcome behavioral and cognitive dysfunctions because the regional and cellular expression of utrophins did not coincide with dystrophin expression in untreated mice, nor did it in AB-treated mice. While treatments based on the modulation of utrophin may alleviate DMD phenotypes in certain organs and tissues that coexpress dystrophins and utrophins in the same cells, improvement of cognitive functions would likely require acting on specific dystrophin-dependent mechanisms.


Assuntos
Arginina/análogos & derivados , Encéfalo/metabolismo , Butiratos/farmacologia , Distrofina/metabolismo , Distrofia Muscular Animal/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Utrofina/metabolismo , Animais , Arginina/farmacologia , Distrofina/deficiência , Distrofina/genética , Camundongos , Camundongos Endogâmicos mdx , Camundongos Knockout , Distrofia Muscular de Duchenne/genética , RNA Mensageiro/metabolismo , Regulação para Cima , Utrofina/genética
9.
PLoS One ; 5(6): e11220, 2010 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-20574530

RESUMO

BACKGROUND: The number of promising therapeutic interventions for Duchenne Muscular Dystrophy (DMD) is increasing rapidly. One of the proposed strategies is to use drugs that are known to act by multiple different mechanisms including inducing of homologous fetal form of adult genes, for example utrophin in place of dystrophin. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we have treated mdx mice with arginine butyrate, prednisone, or a combination of arginine butyrate and prednisone for 6 months, beginning at 3 months of age, and have comprehensively evaluated the functional, biochemical, histological, and molecular effects of the treatments in this DMD model. Arginine butyrate treatment improved grip strength and decreased fibrosis in the gastrocnemius muscle, but did not produce significant improvement in muscle and cardiac histology, heart function, behavioral measurements, or serum creatine kinase levels. In contrast, 6 months of chronic continuous prednisone treatment resulted in deterioration in functional, histological, and biochemical measures. Arginine butyrate-treated mice gene expression profiling experiments revealed that several genes that control cell proliferation, growth and differentiation are differentially expressed consistent with its histone deacetylase inhibitory activity when compared to control (saline-treated) mdx mice. Prednisone and combination treated groups showed alterations in the expression of genes that control fibrosis, inflammation, myogenesis and atrophy. CONCLUSIONS/SIGNIFICANCE: These data indicate that 6 months treatment with arginine butyrate can produce modest beneficial effects on dystrophic pathology in mdx mice by reducing fibrosis and promoting muscle function while chronic continuous treatment with prednisone showed deleterious effects to skeletal and cardiac muscle. Our results clearly indicate the usefulness of multiple assays systems to monitor both beneficial and toxic effects of drugs with broad range of in vivo activity.


Assuntos
Arginina/análogos & derivados , Butiratos/farmacologia , Coração/efeitos dos fármacos , Coração/fisiopatologia , Músculos/efeitos dos fármacos , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/fisiopatologia , Prednisona/farmacologia , Animais , Arginina/farmacologia , Arginina/uso terapêutico , Comportamento Animal/efeitos dos fármacos , Butiratos/uso terapêutico , Modelos Animais de Doenças , Quimioterapia Combinada , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos mdx , Músculos/metabolismo , Músculos/patologia , Músculos/fisiopatologia , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/patologia , Prednisona/uso terapêutico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo , Utrofina/metabolismo
10.
BMC Evol Biol ; 10: 28, 2010 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-20105331

RESUMO

BACKGROUND: In wild populations phenotypic differentiation of skeletal structures is influenced by many factors including epigenetic interactions and plastic response to environmental influences, possibly blurring the expression of genetic differences. In contrast, laboratory animals provide the opportunity to separate environmental from genetic effects. The mouse mandible is particularly prone to such plastic variations because bone remodeling occurs late in postnatal ontogeny, in interaction with muscular loading. In order to understand the impact of this process on mandible morphology, we investigated how change in the masticatory function affects the mandible shape, and its pattern of variation. Breeding laboratory mice on food of different consistencies mimicked a natural variation in feeding ecology, whereas mice affected by the murine analogue of the Duchenne muscular dystrophy provided a case of pathological modification of the mastication process. RESULTS: Food consistency as well as dystrophy caused significant shape changes in the mouse mandible. Further differences were observed between laboratory strains and between sexes within strains, muscular dystrophy causing the largest morphological change. The directions of the morphological changes due to food consistency and muscular dystrophy were discrepant, despite the fact that both are related to bone remodeling. In contrast, directions of greatest variance were comparable among most groups, and the direction of the change due to sexual dimorphism was parallel to the direction of main variance. CONCLUSIONS: Bone remodeling is confirmed as an important factor driving mandible shape differences, evidenced by differences due to both the consistency of the food ingested and muscular dystrophy. However, the resulting shape change will depend on how the masticatory function is affected. Muscular dystrophy caused shape changes distributed all over the mandible, all muscles being affected although possibly to a different degree. In contrast, the chewing function was mostly affected when the mice were fed on hard vs. soft food, whereas grinding likely occurred normally; accordingly, shape change was more localized. The direction of greatest variance, however, was remarkably comparable among groups, although we found a residual variance discarding age, sex, and food differences. This suggests that whatever the context in which bone remodeling occurs, some parts of the mandible such as the angular process are more prone to remodeling during late postnatal growth.


Assuntos
Remodelação Óssea , Epigênese Genética , Mandíbula/crescimento & desenvolvimento , Desenvolvimento Maxilofacial , Distrofia Muscular Animal/fisiopatologia , Animais , Feminino , Alimentos , Masculino , Mandíbula/anatomia & histologia , Mandíbula/fisiopatologia , Mastigação/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Distrofia Muscular Animal/genética , Caracteres Sexuais , Estresse Mecânico
11.
PLoS One ; 4(11): e7998, 2009 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-19956636

RESUMO

BACKGROUND: Sarcopenia is a major public health problem in industrialized nations, placing an increasing burden on public healthcare systems because the loss of skeletal muscle mass and strength that characterizes this affection increases the dependence and the risk of injury caused by sudden falls in elderly people. Albeit exercise and caloric restriction improve sarcopenia-associated decline of the muscular performances, a more suitable and focused pharmacological treatment is still lacking. METHODOLOGY/PRINCIPAL FINDINGS: In order to evaluate such a possible treatment, we investigated the effects of EGb 761, a Ginkgo biloba extract used in chronic age-dependent neurological disorders, on the function of the soleus muscle in aged rats. EGb 761 induced a gain in muscular mass that was associated with an improvement of the muscular performances as assessed by biochemical and electrophysiological tests. DNA microarray analysis shows that these modifications are accompanied by the transcriptional reprogramming of genes related to myogenesis through the TGFbeta signaling pathway and to energy production via fatty acids and glucose oxidation. EGb 761 restored a more juvenile gene expression pattern by regenerating the aged muscle and reversing the age-related metabolic shift from lipids to glucose utilization. CONCLUSIONS/SIGNIFICANCE: Thus, EGb 761 may represent a novel treatment for sarcopenia both more manageable and less cumbersome than exercise and caloric restriction.


Assuntos
Ginkgo biloba/metabolismo , Músculo Esquelético/metabolismo , Extratos Vegetais/farmacologia , Sarcopenia/metabolismo , Transcrição Gênica , Animais , Peso Corporal , Restrição Calórica , Creatina Quinase/sangue , Contração Isométrica , Desenvolvimento Muscular , Músculo Esquelético/efeitos dos fármacos , Ratos , Ratos Wistar , Risco
12.
Neurobiol Dis ; 36(2): 252-8, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19632329

RESUMO

Duchenne muscular dystrophy (DMD), the most common and severe X-linked myopathy, is characterized by the lack of dystrophin, a sub-sarcolemmal protein necessary for normal muscle functions. In a previous study of the lipid content of skeletal muscles of dystrophic (mdx) mice, the animal model for DMD, by in situ Matrix-Assisted Laser Desorption-Ionization Mass Spectrometry (MALDI-MS), an inversion of the phosphatidylcholine PC34:2/PC34:1 ion peaks intensity ratio was observed between destructured (abnormal fiber morphology) and structured (normal fiber morphology). A possible treatment for this dramatic disease is to introduce an exogenous nitric oxide (NO) donor into the organism, leading to an increase of utrophin and a regression of the dystrophic phenotype. In the present work, after confirmation by tandem mass spectrometry of the structure of these two phospholipids, their intensity ratio inversion was used to evidence a restoration of membrane lipid composition very similar to those of wild-type mice after the treatment of mdx mice with molsidomine, a NO donor. This was associated with the observation by immunohistology of an increase of the regeneration process in the mice.


Assuntos
Lipídeos de Membrana/análise , Lipídeos de Membrana/química , Camundongos Endogâmicos mdx , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Animais , Lipídeos de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Fosfatidilcolinas/análise , Fosfatidilcolinas/química , Regeneração/fisiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
13.
Am J Pathol ; 172(6): 1509-19, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18458097

RESUMO

Duchenne muscular dystrophy (DMD) is a lethal, X-linked disorder associated with dystrophin deficiency that results in chronic inflammation, sarcolemma damage, and severe skeletal muscle degeneration. Recently, the use of L-arginine, the substrate of nitric oxide synthase (nNOS), has been proposed as a pharmacological treatment to attenuate the dystrophic pattern of DMD. However, little is known about signaling events that occur in dystrophic muscle with l-arginine treatment. Considering the implication of inflammation in dystrophic processes, we asked whether L-arginine inhibits inflammatory signaling cascades. We demonstrate that L-arginine decreases inflammation and enhances muscle regeneration in the mdx mouse model. Classic stimulatory signals, such as proinflammatory cytokines interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha, are significantly decreased in mdx mouse muscle, resulting in lower nuclear factor (NF)-kappaB levels and activity. NF-kappaB serves as a pivotal transcription factor with multiple levels of regulation; previous studies have shown perturbation of NF-kappaB signaling in both mdx and DMD muscle. Moreover, L-arginine decreases the activity of metalloproteinase (MMP)-2 and MMP-9, which are transcriptionally activated by NF-kappaB. We show that the inhibitory effect of L-arginine on the NF-kappaB/MMP cascade reduces beta-dystroglycan cleavage and translocates utrophin and nNOS throughout the sarcolemma. Collectively, our results clarify the molecular events by which L-arginine promotes muscle membrane integrity in dystrophic muscle and suggest that NF-kappaB-related signaling cascades could be potential therapeutic targets for DMD management.


Assuntos
Arginina/farmacologia , Metaloproteinase 2 da Matriz/fisiologia , Metaloproteinase 9 da Matriz/fisiologia , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/metabolismo , NF-kappa B/fisiologia , Animais , Inflamação/metabolismo , Inflamação/patologia , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Endogâmicos mdx , Fibras Musculares Esqueléticas/fisiologia , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/patologia , Óxido Nítrico Sintase/metabolismo , Regeneração , Transdução de Sinais
14.
J Lipid Res ; 49(2): 438-54, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18025000

RESUMO

Human striated muscle samples, from male control and Duchenne muscular dystrophy-affected children, were subjected to cluster-time-of-flight secondary ion mass spectrometry (cluster-ToF-SIMS) imaging using a 25 keV Bi(3)(+) liquid metal ion gun under static SIMS conditions. Spectra and ion density maps, or secondary ion images, were acquired in both positive and negative ion mode over several areas of 500 x 500 microm(2) (image resolution, 256 x 256 pixels). Characteristic distributions of various lipids were observed. Vitamin E and phosphatidylinositols were found to concentrate within the cells, whereas intact phosphocholines accumulated over the most damaged areas of the dystrophic muscles, together with cholesterol and sphingomyelin species. Fatty acyl chain composition varied depending on the region, allowing estimation of the local damage extent.


Assuntos
Lipídeos/química , Músculo Esquelético/química , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/metabolismo , Espectrometria de Massa de Íon Secundário , Adolescente , Animais , Criança , Modelos Animais de Doenças , Humanos , Lipídeos/análise , Masculino , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/patologia
15.
Neurobiol Dis ; 20(1): 123-30, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16137573

RESUMO

A possible treatment for Duchenne muscular dystrophies would be to compensate for dystrophin loss by increasing the expression of utrophin, another cytoskeletal protein of the muscle membrane. We previously found that L-arginine, the substrate for nitric oxide synthase, significantly increased utrophin level in muscle and targeted it to the sarcolemma. Here, we have addressed the expected benefit in the mdx mice. Magnetic resonance imaging of lower limbs revealed a 35% reduction of the necrotic zones, confirmed by histological staining of muscles. This regression of the necrosis was also supported by the drastic reduction of Evans blue incorporation, a cell impermeable dye. The creatine kinase level in the serum decreased by 57%. Utrophin level increased 2- to 3-fold in muscles. Beta-dystroglycan was relocalised with utrophin to the membrane. In the diaphragm, the most affected muscle in mdx mice, the isometric tension increased by 30%, with regression of collagen and of cytoplasmic lipid overloading. Finally, molsidomine, a therapeutic agent that is converted to a NO donor, also attenuated the dystrophic phenotype. Our results suggest that pharmacological activators of the NO pathway may constitute a realistic treatment for Duchenne and Becker muscular dystrophies.


Assuntos
Arginina/farmacologia , Músculo Esquelético/efeitos dos fármacos , Distrofia Muscular Animal/tratamento farmacológico , Recuperação de Função Fisiológica/efeitos dos fármacos , Animais , Arginina/uso terapêutico , Creatina Quinase/sangue , Diafragma/efeitos dos fármacos , Diafragma/fisiopatologia , Modelos Animais de Doenças , Distroglicanas/metabolismo , Azul Evans , Feminino , Contração Isométrica/efeitos dos fármacos , Contração Isométrica/genética , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/fisiopatologia , Necrose/tratamento farmacológico , Necrose/patologia , Necrose/prevenção & controle , Doadores de Óxido Nítrico/farmacologia , Fenótipo , Recuperação de Função Fisiológica/fisiologia , Resultado do Tratamento , Utrofina/metabolismo
16.
J Soc Biol ; 199(1): 17-28, 2005.
Artigo em Francês | MEDLINE | ID: mdl-16114260

RESUMO

Duchenne muscular dystrophy (DMD) is a severe X-linked genetic disease affecting 1 boy out of 3500. DMD is due to the lack of a submembranous cytoskeletal protein named dystrophin, leading to the progressive degeneration of skeletal, cardiac and smooth muscle tissue. A milder form of the disease, Becker muscular dystrophy (BMD), is characterised by the presence of a semi-functional truncated dystrophin, or the full-length dystrophin at reduced level. Three different therapeutic approaches are currently under study, gene therapy, cellular therapy and pharmacological therapy. One of the chosen strategies consists of the overexpression of utrophin, a protein 80% homologous with dystrophin, and able to perform similar functions. In this review, we shall consider studies of pharmacological therapy, the aims of which can be classified in three categories: reversal of dystrophic phenotype, dystrophin expression, utrophin overexpression.


Assuntos
Distrofia Muscular de Duchenne/tratamento farmacológico , Corticosteroides/uso terapêutico , Adulto , Aminoglicosídeos/uso terapêutico , Animais , Carnitina/uso terapêutico , Criança , Pré-Escolar , Creatina/uso terapêutico , Distrofina/genética , Expressão Gênica/efeitos dos fármacos , Terapia Genética , Substâncias de Crescimento/uso terapêutico , Humanos , Masculino , Camundongos , Miostatina , RNA Antissenso/uso terapêutico , Taurina/uso terapêutico , Fator de Crescimento Transformador beta/uso terapêutico , Utrofina/genética
17.
J Lipid Res ; 46(7): 1388-95, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15834124

RESUMO

Imaging with time-of-flight secondary ion mass spectrometry (TOF-SIMS) has expanded very rapidly with the development of gold cluster ion sources (Au(3+)). It is now possible to acquire ion density maps (ion images) on a tissue section without any treatment and with a lateral resolution of few micrometers. In this article, we have taken advantage of this technique to study the degeneration/regeneration process in muscles of a Duchenne muscular dystrophy model mouse. Specific distribution of different lipid classes (fatty acids, triglycerides, phospholipids, tocopherol, coenzyme Q9, and cholesterol) allows us to distinguish three different regions on a mouse leg section: one is destroyed, another is degenerating (oxidative stress and deregulation of the phosphoinositol cycle), and the last one is stable. TOF-SIMS imaging shows the ability to localize directly on a tissue section a great number of lipid compounds that reflect the state of the cellular metabolism.


Assuntos
Ouro/química , Lipídeos/análise , Músculo Esquelético/química , Distrofia Muscular de Duchenne/fisiopatologia , Espectrometria de Massa de Íon Secundário/métodos , Animais , Antioxidantes/análise , Ácidos Graxos/análise , Glicerídeos/análise , Masculino , Camundongos , Ácidos Fosfatídicos/análise , Fosfatidilcolinas/análise , Fosfatidilinositóis/análise , Regeneração
18.
Eur J Mass Spectrom (Chichester) ; 10(5): 657-64, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15531799

RESUMO

Duchenne muscular dystrophy (DMD) is a neuromuscular disease linked to the lack of the dystrophin, a submembrane protein, leading to muscle weakness and associated with a defect of the lipid metabolism. A study of the fatty acid composition of glycerophosphatidylcholines by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF-MS) and tandem mass spectrometry (MS/MS) enabled us to characterize a change of the lipid composition of dystrophic cells at the time of the differentiation. This modification has been used as a marker to identify with profiling and imaging MALDI-ToF MS regenerating areas in sections of an mdx mouse leg muscle. It is the first time that such a slight change in fatty acid composition has been observed directly on tissue slices using mass spectrometry. This approach will be useful in monitoring the treatment of muscular regeneration.


Assuntos
Glicerilfosforilcolina/análise , Músculo Esquelético/química , Distrofia Muscular de Duchenne , Fosfatidiletanolaminas/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Biomarcadores/análise , Membrana Celular/química , Membrana Celular/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Ácidos Graxos/análise , Glicerilfosforilcolina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Mioblastos/química , Mioblastos/metabolismo , Fosfatidiletanolaminas/metabolismo
19.
Int Rev Cytol ; 240: 1-30, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15548414

RESUMO

Duchenne muscular dystrophy (DMD), a severe X-linked genetic disease affecting one in 3500 boys, is the most common myopathy in children. DMD is due to a lack of dystrophin, a submembrane protein of the cytoskeleton, which leads to the progressive degeneration of skeletal, cardiac, and smooth muscle tissue. A milder form of the disease, Becker muscular dystrophy (BMD), is characterized by the presence of a semifunctional truncated dystrophin, or reduced levels of full-length dystrophin. DMD is the focus of three different supportive or therapeutic approaches: gene therapy, cell therapy, and drug therapy. Here we consider these approaches in terms of three potential goals: improvement of dystrophic phenotype, expression of dystrophin, and overexpression of utrophin. Utrophin exhibits 80% homology with dystrophin and is able to perform similar functions. Pharmacological strategies designed to overexpress utrophin appear promising and may circumvent many obstacles to gene and cell-based therapies.


Assuntos
Distrofina/deficiência , Músculo Esquelético/fisiopatologia , Distrofia Muscular de Duchenne/terapia , Animais , Avaliação Pré-Clínica de Medicamentos/tendências , Distrofina/genética , Terapia Genética/tendências , Humanos , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/fisiopatologia , Óxido Nítrico Sintase/metabolismo , Utrofina/genética , Utrofina/metabolismo
20.
J Physiol Paris ; 96(1-2): 43-52, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-11755782

RESUMO

Duchenne muscular dystrophy (DMD), the severe X-linked recessive disorder which results in progressive muscle degeneration, is due to a lack of dystrophin, a membrane cytoskeletal protein. Three types of treatment are envisaged: pharmacological (glucocorticoid), myoblast transplantation, and gene therapy. An alternative to the pharmacological approach is to compensate for dystrophin loss by the upregulation of another cytoskeletal protein, utrophin. Utrophin and dystrophin are part of a complex of proteins and glycoproteins, which links the basal lamina to the cytoskeleton, thus ensuring the stability of the muscle membrane. One protein of the complex, syntrophin, is associated with a muscular isoform of the neuronal nitric oxide synthase (nNOS). We have demonstrated an overexpression of utrophin, visualised by immunofluorescence and quantified by Western blotting, in normal myotubes and in mdx (the animal model of DMD) myotubes, as in normal (C57) and mdx mice, both treated with nitric oxide (NO) donor or L-arginine, the NOS substrate. There is evidence that utrophin may be capable of performing the same cellular functions as dystrophin and may functionally compensate for its lack. Thus, we propose to use NO donors, as palliative treatment of Duchenne and Becker muscular dystrophies, pending, or in combination with, gene and/or cellular therapy. Discussion has focussed on the various isoforms of NOS that could be implicated in the regeneration process. Dystrophic and healthy muscles respond to treatment, suggesting that although NOS is delocalised in the cytoplasm in the case of DMD, it conserves substantial activity. eNOS present in mitochondria and iNOS present in cytoplasm and the neuromuscular junction could also be activated. Lastly, production of NO by endothelial NOS of the capillaries would also be beneficial through increased supply of metabolites and oxygen to the muscles.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Proteínas de Membrana/metabolismo , Músculo Esquelético/enzimologia , Óxido Nítrico Sintase/metabolismo , Animais , Arginina/farmacologia , Western Blotting , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Imunofluorescência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx/metabolismo , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Valores de Referência , Coxa da Perna , Utrofina , ômega-N-Metilarginina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...