Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(4): e25781, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38390158

RESUMO

Magnetic nanoparticles, such as magnetite (Fe3O4), exhibit superparamagnetic properties below 15 nm at room temperature. They are being explored for medical applications, and the coprecipitation technique is preferred for cost-effective production. This study investigates the impact of synthesis temperature on the nanoparticles' physicochemical characteristics. Two types of magnetic analysis were conducted. Samples T 40, T 50, and T 60 displayed superparamagnetic behavior, as evidenced by the magnetization curves. The experiments verified the development of magnetic nanoparticles with an average diameter of approximately dozens of nanometers, as determined by various measurement methods such as XDR, Raman, and TEM. Raman spectroscopy showed the characteristic bands of the magnetite phase at 319, 364, 499, and 680 cm-1. This was confirmed in the second analysis with the ZFC-FC curves, which showed that the samples' blocking temperatures were below ambient temperature. ZFC-FC curves revealed a similar magnetization of about 30 emu/g when applying a magnetic field of 5 kOe.

2.
Nanomaterials (Basel) ; 13(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37242073

RESUMO

In this work, we have studied structural and magnetic properties of LaFeO3 as a function of the particle size d, from bulk (d >> 1 µm) to nanoscale (d ≈ 30 nm). A large number of twins were observed for large particles that disappear for small particle sizes. This could be related to the softening of the FeO6 distortion as particle size decreases. It was observed that the bulk sample showed spin canting that disappeared for d ~ 125 nm and can be associated with the smoothening of the orthorhombic distortion. On the other hand, for d < 60 nm, the surface/volume ratio became high and, despite the high crystallinity of the nanoparticle, a notable exchange effect bias appeared, originated by two magnetic interactions: spin glass and antiferromagnetism. This exchange bias interaction was originated by the formation of a "magnetic core-shell": the broken bonds at the surface atoms give place to a spin glass behavior, whereas the inner atoms maintain the antiferromagnetic G-type order. The LaFeO3 bulk material was synthesized by the ceramic method, whereas the LaFeO3 nanoparticles were synthesized by the sol-gel method; the particle size was varied by annealing the samples at different temperatures. The physical properties of the materials have been investigated by XRD, HRTEM, TGA, and AC and DC magnetometry.

3.
Materials (Basel) ; 16(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37176307

RESUMO

The present study aims at the integration of the "oxalic conversion" route into "green chemistry" for the synthesis of copper oxide nanoparticles (CuO-NPs) with controllable structural, morphological, and magnetic properties. Two oxalate-containing precursors (H2C2O4.2H2O and (NH4)2C2O4.H2O) and different volume ratios of a mixed water/glycerol solvent were tested. First, the copper oxalates were synthesized and then subjected to thermal decomposition in air at 400 °C to produce the CuO powders. The purity of the samples was confirmed by X-ray powder diffraction (XRPD), and the crystallite sizes were calculated using the Scherrer method. The transmission electron microscopy (TEM) images revealed oval-shaped CuO-NPs, and the scanning electron microscopy (SEM) showed that morphological features of copper oxalate precursors and their corresponding oxides were affected by the glycerol (V/V) ratio as well as the type of C2O42- starting material. The magnetic properties of CuO-NPs were determined by measuring the temperature-dependent magnetization and the hysteresis curves at 5 and 300 K. The obtained results indicate the simultaneous coexistence of dominant antiferromagnetic and weak ferromagnetic behavior.

4.
Materials (Basel) ; 16(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36837202

RESUMO

We have investigated the structural, magnetic, and electrical transport properties of Pr0.7 Sr0.3 Mn(1-x)Cox O3 nanopowders (x = 0, 0.05, 0.10 and 0.15). The Pechini Sol-gel method was used to synthesize these nanopowders. X-ray diffraction at room temperature shows that all the nano powders have an orthorhombic structure of Pnma space group crystallography. The average crystallite size of samples x = 0, 0.05, 0.10, and 0.15 are 33.78 nm, 29 nm, 33.61 nm, and 24.27 nm, respectively. Semi-quantitative chemical analysis by energy dispersive spectroscopy (EDS) confirms the expected stoichiometry of the sample. Magnetic measurements indicate that all samples show a ferromagnetic (FM) to paramagnetic (PM) transition with increasing temperature. The Curie temperature TC gradually decreases (300 K, 270 K, 250 K, and 235 K for x = 0, 0.05, 0.10, and 0.15, respectively) with increasing Co concentrations. The M-H curves for all compounds reveal the PM behavior at 300 K, while the FM behavior characterizes the magnetic hysteresis at low temperature (5 K). The electrical resistivity measurements show that all compounds exhibit metallic behavior at low temperature (T < Tρ) well fitted by the relation ρ = ρ0 + ρ2T2 + ρ4.5T4.5 and semiconductor behavior above Tρ (T > Tρ), for which the electronic transport can be explained by the variable range hopping model and the adiabatic small polaron hopping model. All samples have significant magnetoresistance (MR) values, even at room temperature. This presented research provides an innovative and practical approach to develop materials in several technological areas, such as ultra-high density magnetic recording and magneto resistive sensors.

5.
Nanomaterials (Basel) ; 13(3)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36770411

RESUMO

A systematic study on laser-induced heating carried out in two biological windows (800 nm and 1053 nm) for Fe3O4 nanoparticles in water suspension showed evidence of the strong dependence of the specific absorption rate (SAR) on extrinsic parameters such as the vessel volume or laser spot size. The results show that a minimum of 100 µL must be used in order to obtain vessel-size-independent SARs. In addition, at a constant intensity but different laser powers and spot size ratios, the SARs can differ by a three-fold factor, showing that the laser power and irradiated area strongly affect the heating curves for both wavelengths. The infrared molecular absorber IRA 980B was characterized under the same experimental conditions, and the results confirm the universality of the SARs' dependence on these extrinsic parameters. Based on these results, we propose using solutions of IRA 980B as a standard probe for SAR measurements and employing the ratio SARiron oxide/SARIRA 980B to compare different measurements performed in different laboratories. This measurement standardization allows us to extract more accurate information about the heating performance of different nanoparticles.

6.
Biosensors (Basel) ; 12(10)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36291006

RESUMO

In the quest for effective gas sensors for breath analysis, magnetoelastic resonance-based gas sensors (MEGSs) are remarkable candidates. Thanks to their intrinsic contactless operation, they can be used as non-invasive and portable devices. However, traditional monitoring techniques are bound to slow detection, which hinders their application to fast bio-related reactions. Here we present a method for real-time monitoring of the resonance frequency, with a proof of concept for real-time monitoring of gaseous biomarkers based on resonance frequency. This method was validated with a MEGS based on a Metglass 2826 MB microribbon with a polyvinylpyrrolidone (PVP) nanofiber electrospun functionalization. The device provided a low-noise (RMS = 1.7 Hz), fast (<2 min), and highly reproducible response to humidity (Δf = 46−182 Hz for 17−95% RH), ammonia (Δf = 112 Hz for 40 ppm), and acetone (Δf = 44 Hz for 40 ppm). These analytes are highly important in biomedical applications, particularly ammonia and acetone, which are biomarkers related to diseases such as diabetes. Furthermore, the capability of distinguishing between breath and regular air was demonstrated with real breath measurements. The sensor also exhibited strong resistance to benzene, a common gaseous interferent in breath analysis.


Assuntos
Acetona , Amônia , Acetona/análise , Amônia/análise , Benzeno , Povidona , Gases , Biomarcadores/análise
7.
Inorg Chem ; 61(41): 16228-16238, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36191153

RESUMO

Kagome antiferromagnetic lattices are of high interest because the geometric frustration is expected to give rise to highly degenerated ground states that may host exotic properties such as quantum spin liquid (QSL). Ca10Cr7O28 has been reported to display all the features expected for a QSL. At present, most of the literature reports on samples synthesized with starting materials ratio CaO/Cr2O3 3:1, which leads to a material with small amounts of CaCrO4 and CaO as secondary phases; this impurity excess affects not only the magnetic properties but also the structural ones. In this work, samples with starting material ratios CaO/Cr2O3 3:1, 2.9:1, 2.85:1, and 2.8:1 have been synthesized and studied by X-ray diffraction with Rietveld refinements, selected area electron diffraction measurements, high-resolution transmission electron microscopy (HRTEM), low-temperature magnetometry, and magnetic calorimetry. This result shows that a highly pure Ca10Cr7O28 phase is obtained for a CaO/Cr2O3 ratio of 2.85:1 instead of the 3:1 usually reported; the incorrect stoichiometric ratio leads to a larger distortion of the corner-sharing triangular arrangement of magnetic ions Cr+5 with S = 1/2 in the Kagome lattice. In addition, our study reveals that there exists another frustration pathway which is an asymmetric zigzag spin ladder along the directions [211], [12-1], and [1-1-1], in which the Cr-Cr distances are shorter than in the Kagome layers.

8.
Nanomaterials (Basel) ; 12(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35893533

RESUMO

In the last few years, magnetic nanowires have gained attention due to their potential implementation as building blocks in spintronics applications and, in particular, in domain-wall- based devices. In these devices, the control of the magnetic properties is a must. Cylindrical magnetic nanowires can be synthesized rather easily by electrodeposition and the control of their magnetic properties can be achieved by modulating the composition of the nanowire along the axial direction. In this work, we report the possibility of introducing changes in the composition along the radial direction, increasing the degrees of freedom to harness the magnetization. In particular, we report the synthesis, using template-assisted deposition, of FeNi (or Co) magnetic nanowires, coated with a Au/Co (Au/FeNi) bilayer. The diameter of the nanowire as well as the thickness of both layers can be tuned at will. In addition to a detailed structural characterization, we report a preliminary study on the magnetic properties, establishing the role of each layer in the global collective behavior of the system.

9.
Materials (Basel) ; 15(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35888256

RESUMO

Different studies carried out in the last three decades on the magnetic susceptibility of the spinel ZnFe2O4 ferrite have revealed the positive character of its Curie-Weiss temperature, contradicting its observed antiferromagnetic behavior which is characterized by a well-defined susceptibility peak centered around the Neel temperature (10 K). Some approaches based on ab initio calculations and mixture of interactions have been attempted to explain this anomaly. This work shows how for very low values of the inversion parameter, the small percentage of Fe atoms located in tetrahedral sites gives rise to the appearance of ferrimagnetic clusters around them. Superparamagnetism of these clusters is the main cause of the anomalous Curie-Weiss behavior. This finding is supported experimentally from the thermal dependence of the inverse susceptibility and its evolution with the degree of inversion.

10.
Materials (Basel) ; 15(3)2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35161142

RESUMO

The antiferromagnetic (AFM) transition of the normal ZnFe2O4 has been intensively investigated with results showing a lack of long-range order, spin frustrations, and a "hidden" entropy in the calorimetric properties for inversion degrees δ ≈ 0 or δ = 0. As δ drastically impacts the magnetic properties, it is logical to question how a δ value slightly different from zero can affect the magnetic properties. In this work, (Zn1-δFeδ)[ZnδFe2-δ]O4 with δ = 0.05 and δ = 0.27 have been investigated with calorimetry at different applied fields. It is shown that a δ value as small as 0.05 may affect 40% of the unit cells, which become locally ferrimagnetic (FiM) and coexists with AFM and spin disordered regions. The spin disorder disappears under an applied field of 1 T. Mossbauer spectroscopy confirms the presence of a volume fraction with a low hyperfine field that can be ascribed to these spin disordered regions. The volume fractions of the three magnetic phases estimated from entropy and hyperfine measurements are roughly coincident and correspond to approximately 1/3 for each of them. The "hidden" entropy is the zero point entropy different from 0. Consequently, the so-called "hidden" entropy can be ascribed to the frustrations of the spins at the interphase between the AFM-FiM phases due to having δ ≈ 0 instead of ideal δ = 0.

11.
Biomater Sci ; 9(22): 7575-7590, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34665185

RESUMO

This work describes the preparation, characterization and functionalization with magnetic nanoparticles of a bone tissue-mimetic scaffold composed of collagen and hydroxyapatite obtained through a biomineralization process. Bone remodeling takes place over several weeks and the possibility to follow it in vivo in a quick and reliable way is still an outstanding issue. Therefore, this work aims to produce an implantable material that can be followed in vivo during bone regeneration by using the existing non-invasive imaging techniques (MRI). To this aim, suitably designed biocompatible SPIONs were linked to the hybrid scaffold using two different strategies, one involving naked SPIONs (nMNPs) and the other using coated and activated SPIONs (MNPs) exposing carboxylic acid functions allowing a covalent attachment between MNPs and collagen molecules. Physico-chemical characterization was carried out to investigate the morphology, crystallinity and stability of the functionalized materials followed by MRI analyses and evaluation of a radiotracer uptake ([99mTc]Tc-MDP). Cell proliferation assays in vitro were carried out to check the cytotoxicity and demonstrated no side effects due to the SPIONs. The achieved results demonstrated that the naked and coated SPIONs are more homogeneously distributed in the scaffold when incorporated during the synthesis process. This work demonstrated a suitable approach to develop a biomaterial for bone regeneration that allows the monitoring of the healing progress even for long-term follow-up studies.


Assuntos
Regeneração Óssea , Alicerces Teciduais , Osso e Ossos/diagnóstico por imagem , Colágeno , Durapatita
12.
Materials (Basel) ; 14(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34361495

RESUMO

To modulate the properties of degradable implants from outside of the human body represents a major challenge in the field of biomaterials. Polylactic acid is one of the most used polymers in biomedical applications, but it tends to lose its mechanical properties too quickly during degradation. In the present study, a way to reinforce poly-L lactic acid (PLLA) with magnetic nanoparticles (MNPs) that have the capacity to heat under radiofrequency electromagnetic fields (EMF) is proposed. As mechanical and degradation properties are related to the crystallinity of PLLA, the aim of the work was to explore the possibility of modifying the structure of the polymer through the heating of the reinforcing MNPs by EMF within the biological limit range f·H < 5·× 109 Am-1·s-1. Composites were prepared by dispersing MNPs under sonication in a solution of PLLA. The heat released by the MNPs was monitored by an infrared camera and changes in the polymer were analyzed with differential scanning calorimetry and nanoindentation techniques. The crystallinity, hardness, and elastic modulus of nanocomposites increase with EMF treatment.

13.
ACS Appl Nano Mater ; 4(7): 6678-6688, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34327308

RESUMO

Macroscopic materials with nanoscopic properties have recently been synthesized by self-assembling defined nanoparticles to form self-supported networks, so-called aerogels. Motivated by the promising properties of this class of materials, the search for versatile routes toward the controlled assembly of presynthesized nanoparticles into such ultralight macroscopic materials has become a great interest. Overcoating procedures of colloidal nanoparticles with polymers offer versatile means to produce aerogels from nanoparticles, regardless of their size, shape, or properties while retaining their original characteristics. Herein, we report on the surface modification and assembly of various building blocks: photoluminescent nanorods, magnetic nanospheres, and plasmonic nanocubes with particle sizes between 5 and 40 nm. The polymer employed for the coating was poly(isobutylene-alt-maleic anhydride) modified with 1-dodecylamine side chains. The amphiphilic character of the polymer facilitates the stability of the nanocrystals in aqueous media. Hydrogels are prepared via triggering the colloidally stable solutions, with aqueous cations acting as linkers between the functional groups of the polymer shell. Upon supercritical drying, the hydrogels are successfully converted into macroscopic aerogels with highly porous, open structure. Due to the noninvasive preparation method, the nanoscopic properties of the building blocks are retained in the monolithic aerogels, leading to the powerful transfer of these properties to the macroscale. The open pore system, the universality of the polymer-coating strategy, and the large accessibility of the network make these gel structures promising biosensing platforms. Functionalizing the polymer shell with biomolecules opens up the possibility to utilize the nanoscopic properties of the building blocks in fluorescent probing, magnetoresistive sensing, and plasmonic-driven thermal sensing.

14.
Materials (Basel) ; 14(4)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671647

RESUMO

Zeolites are widely used in high-temperature oil refining processes such as fluid catalytic cracking (FCC), hydrocracking, and aromatization. Significant energy cost are associated with these processes due to the high temperatures required. The induction heating promoted by magnetic nanoparticles (MNPs) under radio frequency fields could contribute to solving this problem by providing a supplementary amount of heat in a nano-localized way, just at the active centre site where the catalytic process takes place. In this study, the potential of such a complementary route to reducing energetic requirements is evaluated. The catalytic cracking reaction under a hydrogen atmosphere (hydrocracking) applied to the conversion of plastics was taken as an application example. Thus, a commercial zeolite catalyst (H-USY) was impregnated with three different magnetic nanoparticles: nickel (Ni), cobalt (Co), maghemite (γ-Fe2O3), and their combinations and subjected to electromagnetic fields. Temperature increases of approximately 80 °C were measured for H-USY zeolite impregnated with γ-Fe2O3 and Ni-γ-Fe2O3 due to the heat released under the radio frequency fields. The potential of the resulting MNPs derived catalyst for HDPE (high-density polyethylene) conversion was also evaluated by thermogravimetric analysis (TGA) under hydrogen atmosphere. This study is a proof of concept to show that induction heating could be used in combination with traditional resistive heating as an additional energy supplier, thereby providing an interesting alternative in line with a greener technology.

15.
Materials (Basel) ; 14(4)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546176

RESUMO

The scientific community has made great efforts in advancing magnetic hyperthermia for the last two decades after going through a sizeable research lapse from its establishment. All the progress made in various topics ranging from nanoparticle synthesis to biocompatibilization and in vivo testing have been seeking to push the forefront towards some new clinical trials. As many, they did not go at the expected pace. Today, fruitful international cooperation and the wisdom gain after a careful analysis of the lessons learned from seminal clinical trials allow us to have a future with better guarantees for a more definitive takeoff of this genuine nanotherapy against cancer. Deliberately giving prominence to a number of critical aspects, this opinion review offers a blend of state-of-the-art hints and glimpses into the future of the therapy, considering the expected evolution of science and technology behind magnetic hyperthermia.

16.
Nanoscale Adv ; 3(20): 5801-5812, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36132668

RESUMO

Magnetite nanoparticles (MNPs) with 12, 34 and 53 nm sizes have been measured by AC-magnetometry at 50 kHz and 57 mT maximum applied field. The MNPs form chains under the AC-field, and the dynamics of the formation can be studied by measuring hysteresis cycles at different times. The measurement time has been varied from 5 ms to 10 s and for different initial temperatures of 5, 25 and 50 °C. The chain formation, identified by the increase of susceptibility and remanence with the measurement time, appears only for 34 nm particles. It has been observed that saturation, remanence and susceptibility at low (high) fields increase (decrease) with time. For the other two samples, these magnitudes are independent of time. At low fields, the heating efficiency is higher at 5 °C than at 50 °C, whereas it shows an opposite behaviour at higher fields; the origin of this behaviour is discussed in the article. Additionally, the relaxation times, τ N and τ B, have been calculated by considering the influence of the applied field. Chain formation requires translation and rotation of MNPs; therefore, the Brownian mechanism plays a fundamental role. It is found that magnetic reversal for 12 nm MNPs is mainly due to Néel relaxation. However, in the case of 34 nm MNPs, both mechanisms, Néel and Brownian relaxation, can be present depending on the amplitude of the field; for µ 0 H < 22 mT, the physical rotation of the particle is the dominant mechanism; on the other hand, for µ 0 H > 22 mT, both mechanisms are present within the size distribution. This highlights the importance of taking the field intensity into account to calculate relaxation times when analysing the relaxation mechanisms of magnetic colloids subjected to AC fields.

17.
Materials (Basel) ; 13(18)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927796

RESUMO

The ultra-stable Y (H-USY) zeolite is used as catalyst for the conversion of plastic feedstocks into high added value products through catalytic cracking technologies. However, the energy requirements associated with these processes are still high. On the other hand, induction heating by magnetic nanoparticles has been exploited for different applications such as cancer treatment by magnetic hyperthermia, improving of water electrolysis and many other heterogeneous catalytic processes. In this work, the heating efficiency of γ-Fe2O3 nanoparticle impregnated zeolites is investigated in order to determine the potential application of this system in catalytic reactions promoted by acid catalyst centers under inductive heating. The γ-Fe2O3 nanoparticle impregnated zeolite has been investigated by X-ray diffraction, electron microscopy, ammonia temperature program desorption (NH3-TPD), H2 absorption, thermogravimetry and dc and ac-magnetometry. It is observed that the diffusion of the magnetic nanoparticles in the pores of the zeolite is possible due to a combined micro and mesoporous structure and, even when fixed in a solid matrix, they are capable of releasing heat as efficiently as in a colloidal suspension. This opens up the possibility of exploring the application at higher temperatures.

18.
Nanoscale ; 12(9): 5412-5421, 2020 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-32080699

RESUMO

Materials displaying novel magnetic ground states signify the most exciting prospects for nanoscopic devices for nanoelectronics and spintronics. Spin transition materials, e.g., spin liquids and spin glasses, are at the forefront of this pursuit; but the few synthesis routes available do not produce them at the nanoscale. Thus, it remains an open question if and how their spin transition nature persists at such small dimensions. Here we demonstrate a new route to synthesize nanoparticles of spin transition materials, gas-diffusion electrocrystallization (GDEx), wherein the reactive precipitation of soluble metal ions with the products of the oxygen reduction reaction (ORR), i.e., in situ produced H2O2, OH-, drives their formation at the electrochemical interface. Using mixtures of Cu2+ and Zn2+ as the metal precursors, we form spin transition materials of the herbertsmithite family-heralded as the first experimental material known to exhibit the properties of a quantum spin liquid (QSL). Single-crystal nanoparticles of ∼10-16 nm were produced by GDEx, with variable Cu/Zn stoichiometry at the interlayer sites of ZnxCu4-x(OH)6Cl2. For x = 1 (herbertsmithite) the GDEx nanoparticles demonstrated a quasi-QSL behavior, whereas for x = 0.3 (0.3 < x < 1 for paratacamite) and x = 0 (clinoatacamite) a spin-glass behavior was evidenced. Finally, our discovery not only confirms redox reactions as the driving force to produce spin transition nanoparticles, but also proves a simple way to switch between these magnetic ground states within an electrochemical system, paving the way to further explore its reversibility and overarching implications.

19.
Sci Rep ; 10(1): 602, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31953435

RESUMO

It is well stablished that heating efficiency of magnetic nanoparticles under radiofrequency fields is due to the hysteresis power losses. In the case of microwires (MWs), it is not clear at all since they undergo non-coherent reversal mechanisms that decrease the coercive field and, consequently, the heating efficiency should be much smaller than the nanoparticles. However, colossal heating efficiency has been observed in MWs with values ranging from 1000 to 2800 W/g, depending on length and number of microwires, at field as low as H = 36 Oe at f = 625 kHz. It is inferred that this colossal heating is due to the Joule effect originated by the eddy currents induced by the induction field B = M + χH parallel to longitudinal axis. This effect is observed in MWs with nearly zero magnetostrictive constant as Fe2.25Co72.75Si10B15 of 30 µm magnetic diameter and 5 mm length, a length for which the inner core domain of the MWs becomes axial. This colossal heating is reached with only 24 W of power supplied making these MWs very promising for inductive heating applications at a very low energy cost.

20.
Chem Sci ; 10(27): 6612-6616, 2019 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-31367312

RESUMO

Efficient and low cost detection of harmful volatile organic compounds (VOCs) is a major health and environmental need in industrialized societies. For this, tailor-made porous coordination polymers are emerging as promising molecular sensing materials thanks to their responsivity to a wide variety of external stimuli and could be used to complement conventional sensors. Here, a non-porous crystalline 1D Fe(ii) coordination polymer acting as a porous acetonitrile host is presented. The desorption of interstitial acetonitrile is accompanied by magneto-structural transitions easily detectable in the optical and electronic properties of the material. This structural switch and therefore its (opto)electronic readout are reversible under exposure of the crystal to acetonitrile vapor. This simple and robust iron-based coordination polymer could be ideally suited for the construction of multifunctional sensor devices for volatile acetonitrile and potentially for other organic compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...