Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37514792

RESUMO

A composite optical bench made up of Carbon Fiber Reinforced Polymer (CFRP) skin and aluminum honeycomb has been developed for the Tunable Magnetograph instrument (TuMag) for the SUNRISE III mission within the NASA Long Duration Balloon Program. This optical bench has been designed to meet lightweight and low sensitivity to thermal gradient requirements, resulting in a low Coefficient of Thermal Expansion (CTE). In addition to the flight model, a breadboard model identical to the flight one has been manufactured, including embedded fiber Bragg temperature and strain sensors. The aim of this is to explore if the use of distributed fiber Bragg gratings (FBGs) can provide valuable information for strain and temperature mapping of an optical instrument on board a space mission during its operation as well as its on-ground testing. Furthermore, surface-mounted strain FBG sensors and thermocouples have been installed in the optical bench for intercomparison purposes. This paper presents the results obtained from a thermal vacuum test consisting of three thermal cycles with stabilization steps at 100 °C, 60 °C, 20 °C and -20 °C. Experimental results provide information about how FBG embedded temperature sensors can provide a proper and quick response to the temperature changes of the optical bench and that embedded FBG strain sensors are able to measure micro-deformation induced in a close-to-zero CTE optical bench.

2.
Materials (Basel) ; 15(15)2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35897561

RESUMO

The tendency over the last decades in the aerospace industry is to substitute classic metallic materials with new composite materials such as carbon fiber composites (CFC), fiber glass, etc., as well as adding electronic devices to ensure the safety and proper platform operation. Due to this, to protect the aircraft against the Electromagnetic Environmental Effects (E3), it is mandatory to develop accurate electromagnetic (EM) characterization measurement systems to analyze the behavior of new materials and electronic components. In this article, several measurement methods are described to assess the EM behavior of the samples under test: microstrip transmission line for a surface current analysis, free space to obtain intrinsic features of the materials and shielding effectiveness (SE) approaches to figure out how well they isolate from EM fields. The results presented in this work show how the different facilities from the National Institute of Aerospace Technology (INTA) are suitable for such purposes, being capable of measuring a wide variety of materials, depending on the type of test to be carried out.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...