Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-21190520
3.
Cell Mol Life Sci ; 64(12): 1518-30, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17415523

RESUMO

Monothiol glutaredoxins with the CGFS sequence at the active site are widespread among prokaryotes and eukaryotes. Two subclasses exist, those with a single glutaredoxin domain and those with a thioredoxin-like region followed by one or more glutaredoxin domains. Studies in Saccharomyces cerevisiae have demonstrated the role of the Grx5 protein in the biogenesis of iron-sulfur clusters. Grx5 homologues in other eukaryotes could carry out similar functions. Two S. cerevisiae monothiol glutaredoxins with the thioredoxin-like extension, Grx3 and Grx4, are modulators of the transcriptional activator Aft1, which regulates iron uptake in yeast. The human PICOT protein is a Grx3/Grx4 homologue with the same hybrid primary structure that regulates protein kinase C activity and may participate in physiological processes such as control of cardiac function. Therefore, monothiol glutaredoxins share a common basic structural motif and biochemical mechanism of action, while participating in a diversity of cellular functions as protein redox regulators.


Assuntos
Oxirredutases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Glutarredoxinas , Humanos , Oxirredutases/química , Oxirredutases/genética , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Compostos de Sulfidrila/metabolismo
4.
Mol Cell Biol ; 21(21): 7150-62, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11585898

RESUMO

Deletion of the Saccharomyces cerevisiae TOP3 gene, encoding Top3p, leads to a slow-growth phenotype characterized by an accumulation of cells with a late S/G2 content of DNA (S. Gangloff, J. P. McDonald, C. Bendixen, L. Arthur, and R. Rothstein, Mol. Cell. Biol. 14:8391-8398, 1994). We have investigated the function of TOP3 during cell cycle progression and the molecular basis for the cell cycle delay seen in top3Delta strains. We show that top3Delta mutants exhibit a RAD24-dependent delay in the G2 phase, suggesting a possible role for Top3p in the resolution of abnormal DNA structures or DNA damage arising during S phase. Consistent with this notion, top3Delta strains are sensitive to killing by a variety of DNA-damaging agents, including UV light and the alkylating agent methyl methanesulfonate, and are partially defective in the intra-S-phase checkpoint that slows the rate of S-phase progression following exposure to DNA-damaging agents. This S-phase checkpoint defect is associated with a defect in phosphorylation of Rad53p, indicating that, in the absence of Top3p, the efficiency of sensing the existence of DNA damage or signaling to the Rad53 kinase is impaired. Consistent with a role for Top3p specifically during S phase, top3Delta mutants are sensitive to the replication inhibitor hydroxyurea, expression of the TOP3 mRNA is activated in late G1 phase, and DNA damage checkpoints operating outside of S phase are unaffected by deletion of TOP3. All of these phenotypic consequences of loss of Top3p function are at least partially suppressed by deletion of SGS1, the yeast homologue of the human Bloom's and Werner's syndrome genes. These data implicate Top3p and, by inference, Sgs1p in an S-phase-specific role in the cellular response to DNA damage. A model proposing a role for these proteins in S phase is presented.


Assuntos
Proteínas de Ciclo Celular , Dano ao DNA , DNA Topoisomerases Tipo I/metabolismo , DNA Topoisomerases Tipo I/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Fase S , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Alquilantes/farmacologia , Northern Blotting , Western Blotting , Ciclo Celular , Quinase do Ponto de Checagem 2 , Relação Dose-Resposta a Droga , Citometria de Fluxo , Fase G2 , Deleção de Genes , Hidroxiureia/farmacologia , Metanossulfonato de Metila/farmacologia , Mitose , Modelos Biológicos , Mutação , Fenótipo , Fosforilação , Saccharomyces cerevisiae/enzimologia , Fatores de Tempo , Raios Ultravioleta
6.
EMBO J ; 17(9): 2687-98, 1998 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-9564050

RESUMO

In budding yeast, RAD9 and RAD24/RAD17/MEC3 are believed to function upstream of MEC1 and RAD53 in signalling the presence of DNA damage. Deletion of any one of these genes reduces the normal G1/S and G2/M checkpoint delays after UV irradiation, whereas in rad9Delta-rad24Delta cells the G1/S checkpoint is undetectable, although there is a residual G2/M checkpoint. We have shown previously that RAD9 also controls the transcriptional induction of a DNA damage regulon (DDR). We now report that efficient DDR induction requires all the above-mentioned checkpoint genes. Residual induction of the DDR after UV irradiation observed in all single mutants is not detectable in rad9Delta-rad24Delta. We have examined the G2/M checkpoint and UV sensitivity of single mutants after overexpression of the checkpoint proteins. This analysis indicates that RAD9 and the RAD24 epistasis group can be placed onto two separate, additive branches that converge on MEC1 and RAD53. Furthermore, MEC3 appears to function downstream of RAD24/RAD17. The transcriptional response to DNA damage revealed unexpected and specific antagonism between RAD9 and RAD24. Further support for genetic interaction between RAD9 and RAD24 comes from study of the modification and activation of Rad53 after damage. Evidence for bypass of RAD53 function under some conditions is also presented.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiologia , Dano ao DNA , Proteínas Fúngicas/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/fisiologia , Raios Ultravioleta , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/efeitos da radiação , DNA Fúngico/biossíntese , DNA Fúngico/efeitos dos fármacos , DNA Fúngico/efeitos da radiação , Proteínas de Ligação a DNA , Exodesoxirribonucleases/metabolismo , Fase G1 , Fase G2 , Peptídeos e Proteínas de Sinalização Intracelular , Cinética , Fator de Acasalamento , Mitose , Nocodazol/farmacologia , Proteínas Nucleares , Peptídeos/farmacologia , Fosforilação , Fase S , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética
7.
EMBO J ; 15(15): 3912-22, 1996 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-8670896

RESUMO

Cells respond to DNA damage by arresting cell cycle progression and activating several DNA repair mechanisms. These responses allow damaged DNA to be repaired efficiently, thus ensuring the maintenance of genetic integrity. In the budding yeast, Saccharomyces cerevisiae, DNA damage leads both to activation of checkpoints at the G1, S and G2 phases of the cell cycle and to a transcriptional response. The G1 and G2 checkpoints have been shown previously to be under the control of the RAD9 gene. We show here that RAD9 is also required for the transcriptional response to DNA damage. Northern blot analysis demonstrated that RAD9 controls the DNA damage-specific induction of a large 'regulon' of repair, replication and recombination genes. This induction is cell-cycle independent as it was observed in asynchronous cultures and cells blocked in G1 or G2/M. RAD9-dependent induction was also observed from isolated damage responsive promoter elements in a lacZ reporter-based plasmid assay. RAD9 cells deficient in the transcriptional response were more sensitive to DNA damage than wild-type cells, even after functional substitution of checkpoints, suggesting that this activation may have an important role in DNA repair. Our findings parallel observations with the Escherichia coli SOS system and suggest the existence of an analogous eukaryotic network coordinating the cellular responses to DNA damage.


Assuntos
Proteínas de Ciclo Celular , Dano ao DNA , Proteínas Fúngicas/metabolismo , Saccharomyces cerevisiae/genética , Transcrição Gênica , Sequência de Bases , Northern Blotting , Reparo do DNA , Replicação do DNA , DNA Fúngico , Proteínas de Ligação a DNA/metabolismo , Óperon Lac , Dados de Sequência Molecular , Rad51 Recombinase , Recombinação Genética , Regulon , Saccharomyces cerevisiae/efeitos da radiação , Proteínas de Saccharomyces cerevisiae , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...