Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 956: 24-31, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28093122

RESUMO

Probing tumor extracellular metabolites is a vitally important issue in current cancer biology. In this study an analytical system was constructed for the in vivo monitoring of mouse tumor extracellular hydrogen peroxide (H2O2), lactate, and glucose by means of microdialysis (MD) sampling and fluorescence determination in conjunction with a smart sequential enzymatic derivatization scheme-involving a loading sequence of fluorogenic reagent/horseradish peroxidase, microdialysate, lactate oxidase, pyruvate, and glucose oxidase-for step-by-step determination of sampled H2O2, lactate, and glucose in mouse tumor microdialysate. After optimization of the overall experimental parameters, the system's detection limit reached as low as 0.002 mM for H2O2, 0.058 mM for lactate, and 0.055 mM for glucose, based on 3 µL of microdialysate, suggesting great potential for determining tumor extracellular concentrations of lactate and glucose. Spike analyses of offline-collected mouse tumor microdialysate and monitoring of the basal concentrations of mouse tumor extracellular H2O2, lactate, and glucose, as well as those after imparting metabolic disturbance through intra-tumor administration of a glucose solution through a prior-implanted cannula, were conducted to demonstrate the system's applicability. Our results evidently indicate that hyphenation of an MD sampling device with an optimized sequential enzymatic derivatization scheme and a fluorescence spectrometer can be used successfully for multi-analyte monitoring of tumor extracellular metabolites in living animals.


Assuntos
Glucose/análise , Peróxido de Hidrogênio/análise , Ácido Láctico/análise , Microdiálise , Neoplasias/química , Animais , Camundongos
2.
J Chromatogr A ; 1402: 1-7, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-26004654

RESUMO

The extravasation of administered nano-drug carriers is a critical process for determining their distributions in target and non-target organs, as well as their pharmaceutical efficacies and side effects. To evaluate the extravasation behavior of gold nanoparticles (AuNPs), currently the most popular drug delivery system, in a mouse tumor model, in this study we employed push-pull perfusion (PPP) as a means of continuously sampling tumor extracellular AuNPs. To facilitate quantification of the extravasated AuNPs through inductively coupled plasma mass spectrometry, we also developed a novel online open-tubular fractionation scheme to allow interference-free determination of the sampled extracellular AuNPs from the coexisting biological matrix. After optimizing the flow-through volume and flow rate of this proposed fractionation scheme, we found that (i) the system's temporal resolution was 7.5h(-1), (ii) the stability presented by the coefficient of variation was less than 10% (6-h continuous measurement), and (iii) the detection limits for the administered AuNPs were in the range 0.057-0.068µgL(-1). Following an intravenous dosage of AuNPs (0.3mgkg(-1) body weight), in vivo acquired profiles indicated that the pegylated AuNPs (PEG-AuNPs) had greater tendency toward extravasating into the tumor extracellular space. We also observed that the accumulation of nanoparticles in the whole tumor tissues was higher for PEG-AuNPs than for non-pegylated ones. Overall, pegylation appears to promote the extravasation and accumulation of AuNPs for nano-drug delivery applications.


Assuntos
Ouro/análise , Nanopartículas/análise , Neoplasias/química , Animais , Fracionamento Químico , Modelos Animais de Doenças , Portadores de Fármacos , Sistemas de Liberação de Medicamentos/normas , Espaço Extracelular/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA