Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EFSA J ; 21(8): e08194, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37644961

RESUMO

This guidance document provides a tiered framework for risk assessors and facilitates risk managers in making decisions concerning the approval of active substances (AS) that are chemicals in plant protection products (PPPs) and biocidal products, and authorisation of the products. Based on the approaches presented in this document, a conclusion can be drawn on the impact of water treatment processes on residues of the AS or its metabolites in surface water and/or groundwater abstracted for the production of drinking water, i.e. the formation of transformation products (TPs). This guidance enables the identification of actual public health concerns from exposure to harmful compounds generated during the processing of water for the production of drinking water, and it focuses on water treatment methods commonly used in the European Union (EU). The tiered framework determines whether residues from PPP use or residues from biocidal product use can be present in water at water abstraction locations. Approaches, including experimental methods, are described that can be used to assess whether harmful TPs may form during water treatment and, if so, how to assess the impact of exposure to these water treatment TPs (tTPs) and other residues including environmental TPs (eTPs) on human and domesticated animal health through the consumption of TPs via drinking water. The types of studies or information that would be required are described while avoiding vertebrate testing as much as possible. The framework integrates the use of weight-of-evidence and, when possible alternative (new approach) methods to avoid as far as possible the need for additional testing.

2.
Environ Monit Assess ; 194(10): 713, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36042104

RESUMO

In this study, we analyzed the concentration distributions of 20 polycyclic aromatic hydrocarbons (PAHs) in 41 water samples which were collected from the northern part of Taihu Lake during 4 field campaigns (201511, 201606, 201702 and 201709). The concentrations were determined with GC-MS, and their spatial and seasonal distribution characteristics were interpreted. The results show that 2-ring PAHs present considerably higher concentrations in warm seasons than cold seasons, but the concentrations of the other higher-ring PAHs are rather stable in warm and cold seasons. The distribution patterns of these PAHs might be mainly attributed to ambient temperature effects on the PAH solubility in the water body. Meanwhile, the spatial distributions of the PAH concentrations in cold seasons were rather various in the sampling area, while the distributions in the warm seasons were homogeneous. The different distributions could result from the water recharge from the Yangtze River during cold seasons, which diluted PAH concentrations in the northeastern part of the lake. Furthermore, via literature review on PAH concentrations in water body, PAHs are in a wide range of levels and their patterns are different among the studies, which should be more effected by local factors instead of general PAH properties. The results from this study also present special characteristics of PAHs in Taihu Lake, which exhibit more insight on PAHs existence in water bodies.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , China , Monitoramento Ambiental/métodos , Sedimentos Geológicos , Lagos , Hidrocarbonetos Policíclicos Aromáticos/análise , Água , Poluentes Químicos da Água/análise
3.
Sci Total Environ ; 667: 809-820, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30851614

RESUMO

Effect-based methods (EBMs) are recommended as holistic approach for diagnosis and monitoring of water quality; however, the application of EBMs is still scare in China. In the present study, water quality of the freshwater lake Taihu (China) was investigated by EBMs. Different types of water samples were collected from three bays of the lake during 2015, 2016 and 2017. A battery of seven effect-based bioassays, including both specific and non-specific toxicity assays, was used. The bioassay battery was recently suggested based on joint activities of the EU project SOLUTIONS and the NORMAN network on emerging pollutants and is also under discussion for being implemented into monitoring activities in the context of the European Water Framework Directive (WFD). Adverse effects were observed towards the primary producer, primary consumer and fish, indicating the potential ecotoxicity of water in Taihu Lake. Mutagenic and estrogenic effects were found in the Ames fluctuation assay and ERα CALUX (Chemically Activated Luciferase Gene-eXpression) assay, respectively, highlighting the potential risks on human health. Algal growth inhibition and mutagenic effects can be observed during each of the three years. Acute toxicity towards Daphnia magna and estrogen receptor agonistic effects were found in at least one of the samples collected in 2016 and 2017, but not in 2015. The endpoints for fish toxicity in the Danio rerio fish embryo test included both lethal and additionally several sublethal effects (only for samples from 2017) and were not compared between years. Algal growth inhibition, fish embryo toxicity, mutagenic effect and estrogenicity were observed in each of the three bays, while Daphnia acute toxicity was only found in Zhushan Bay. Taking together, this study provides a big picture on the water quality of Taihu Lake. The battery of effect-based tools is promising to be a routine for water quality monitoring in China.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água/toxicidade , Animais , China , Daphnia , Ecotoxicologia , Eutrofização , Peixes , Sedimentos Geológicos , Lagos
4.
Environ Sci Eur ; 28(1): 24, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27840787

RESUMO

The Taihu (Tai lake) region is one of the most economically prospering areas of China. Due to its location within this district of high anthropogenic activities, Taihu represents a drastic example of water pollution with nutrients (nitrogen, phosphate), organic contaminants and heavy metals. High nutrient levels combined with very shallow water create large eutrophication problems, threatening the drinking water supply of the surrounding cities. Within the international research project SIGN (SinoGerman Water Supply Network, www.water-sign.de), funded by the German Federal Ministry of Education and Research (BMBF), a powerful consortium of fifteen German partners is working on the overall aim of assuring good water quality from the source to the tap by taking the whole water cycle into account: The diverse research topics range from future proof strategies for urban catchment, innovative monitoring and early warning approaches for lake and drinking water, control and use of biological degradation processes, efficient water treatment technologies, adapted water distribution up to promoting sector policy by good governance. The implementation in China is warranted, since the leading Chinese research institutes as well as the most important local stakeholders, e.g. water suppliers, are involved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...