Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell ; 29(5): 1137-1156, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28420746

RESUMO

In addition to the nucleus, mitochondria and chloroplasts in plant cells also contain genomes. Efficient DNA repair pathways are crucial in these organelles to fix damage resulting from endogenous and exogenous factors. Plant organellar genomes are complex compared with their animal counterparts, and although several plant-specific mediators of organelle DNA repair have been reported, many regulators remain to be identified. Here, we show that a mitochondrial SWI/SNF (nucleosome remodeling) complex B protein, SWIB5, is capable of associating with mitochondrial DNA (mtDNA) in Arabidopsis thaliana Gain- and loss-of-function mutants provided evidence for a role of SWIB5 in influencing mtDNA architecture and homologous recombination at specific intermediate-sized repeats both under normal and genotoxic conditions. SWIB5 interacts with other mitochondrial SWIB proteins. Gene expression and mutant phenotypic analysis of SWIB5 and SWIB family members suggests a link between organellar genome maintenance and cell proliferation. Taken together, our work presents a protein family that influences mtDNA architecture and homologous recombination in plants and suggests a link between organelle functioning and plant development.


Assuntos
Arabidopsis/metabolismo , DNA Mitocondrial/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , DNA Mitocondrial/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Mitocôndrias/genética , Proteínas Mitocondriais/genética
2.
Plant Mol Biol ; 93(6): 659-668, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28229269

RESUMO

In plant mitochondria, the 5' ends of many transcripts are generated post-transcriptionally. We show that the pentatricopeptide repeat (PPR) protein RNA PROCESSING FACTOR 4 (RPF4) supports the generation of extra 5' ends of ccmB transcripts in Landsberg erecta (Ler) and a number of other Arabidopsis thaliana ecotypes. RPF4 was identified in Ler applying a forward genetic approach supported by complementation studies of ecotype Columbia (Col), which generates the Ler-type extra ccmB 5' termini only after the introduction of the RPF4 allele from Ler. Studies with chimeric RPF4 proteins composed of various parts of the RPF4 proteins from Ler and Col identified differences in the N-terminal and central PPR motifs that explain ecotype-specific variations in ccmB processing. These results fit well with binding site predictions in ccmB transcripts based on the known determinants of nucleotide base recognition by PPR motifs.


Assuntos
Arabidopsis/genética , Alelos , Proteínas de Arabidopsis/genética , Ecótipo , Regulação da Expressão Gênica de Plantas , Proteínas Mitocondriais/genética , RNA , RNA Mensageiro , RNA Mitocondrial , RNA de Plantas/genética , Sequências Repetitivas de Aminoácidos
3.
Plant Physiol ; 173(2): 1164-1176, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28011633

RESUMO

We report the partial complementation and subsequent comparative molecular analysis of two nonviable mutants impaired in chloroplast translation, one (emb2394) lacking the RPL6 protein, and the other (emb2654) carrying a mutation in a gene encoding a P-class pentatricopeptide repeat protein. We show that EMB2654 is required for the trans-splicing of the plastid rps12 transcript and that therefore the emb2654 mutant lacks Rps12 protein and fails to assemble the small subunit of the plastid ribosome, explaining the loss of plastid translation and consequent embryo-lethal phenotype. Predictions of the EMB2654 binding site match a small RNA "footprint" located on the 5' half of the trans-spliced intron that is almost absent in the partially complemented mutant. EMB2654 binds sequence specifically to this target sequence in vitro. Altered patterns in nuclease-protected small RNA fragments in emb2654 show that EMB2654 binding must be an early step in, or prior to, the formation of a large protein-RNA complex covering the free ends of the two rps12 intron halves.


Assuntos
Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Subunidades Ribossômicas Menores/metabolismo , Trans-Splicing/genética , Sequência de Bases , Sítios de Ligação , Teste de Complementação Genética , Íntrons/genética , Modelos Genéticos , Mutação/genética , Conformação de Ácido Nucleico , Fenótipo , Plastídeos/metabolismo , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Análise de Sequência de RNA
4.
Plant Physiol ; 170(1): 354-66, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26537562

RESUMO

Mitochondrial translation involves a complex interplay of ancient bacteria-like features and host-derived functionalities. Although the basic components of the mitochondrial translation apparatus have been recognized, very few protein factors aiding in recruiting ribosomes on mitochondria-encoded messenger RNA (mRNAs) have been identified in higher plants. In this study, we describe the identification of the Arabidopsis (Arabidopsis thaliana) MITOCHONDRIAL TRANSLATION FACTOR1 (MTL1) protein, a new member of the Pentatricopeptide Repeat family, and show that it is essential for the translation of the mitochondrial NADH dehydrogenase subunit7 (nad7) mRNA. We demonstrate that mtl1 mutant plants fail to accumulate the Nad7 protein, even though the nad7 mature mRNA is produced and bears the same 5' and 3' extremities as in wild-type plants. We next observed that polysome association of nad7 mature mRNA is specifically disrupted in mtl1 mutants, indicating that the absence of Nad7 results from a lack of translation of nad7 mRNA. These findings illustrate that mitochondrial translation requires the intervention of gene-specific nucleus-encoded PPR trans-factors and that their action does not necessarily involve the 5' processing of their target mRNA, as observed previously. Interestingly, a partial decrease in nad7 intron 2 splicing was also detected in mtl1 mutants, suggesting that MTL1 is also involved in group II intron splicing. However, this second function appears to be less essential for nad7 expression than its role in translation. MTL1 will be instrumental to understand the multifunctionality of PPR proteins and the mechanisms governing mRNA translation and intron splicing in plant mitochondria.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , NADH Desidrogenase/genética , Splicing de RNA , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Íntrons , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mutação , NADH Desidrogenase/metabolismo , Plantas Geneticamente Modificadas , Polirribossomos/genética , Polirribossomos/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mitocondrial
5.
Plant Cell ; 24(8): 3349-65, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22942382

RESUMO

The molecular chaperone heat shock protein101 (HSP101) is required for acquired thermotolerance in plants and other organisms. To identify factors that interact with HSP101 or that are involved in thermotolerance, we screened for extragenic suppressors of a dominant-negative allele of Arabidopsis thaliana HSP101, hot1-4. One suppressor, shot1 (for suppressor of hot1-4 1), encodes a mitochondrial transcription termination factor (mTERF)-related protein, one of 35 Arabidopsis mTERFs about which there is limited functional data. Missense (shot1-1) and T-DNA insertion (shot1-2) mutants suppress the hot1-4 heat-hypersensitive phenotype. Furthermore, shot1-2 suppresses other heat-sensitive mutants, and shot1-2 alone is more heat tolerant than the wild type. SHOT1 resides in mitochondria, indicating it functions independently of cytosolic/nuclear HSP101. Microarray analysis suggests altered mitochondrial function and/or retrograde signaling in shot1-2 increases transcripts of other HSPs and alters expression of redox-related genes. Reduced oxidative damage is the likely cause of shot1 thermotolerance, indicating HSP101 repairs protein oxidative damage and/or reduced oxidative damage allows recovery in the absence of HSP101. Changes in organelle-encoded transcripts in shot1 demonstrate that SHOT1 is involved in organelle gene regulation. The heat tolerance of shot1 emphasizes the importance of mitochondria in stress tolerance, and defining its function may provide insights into control of oxidative damage for engineering stress-resistant plants.


Assuntos
Aclimatação , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Alelos , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genes Mitocondriais , Genes de Plantas , Resposta ao Choque Térmico , Temperatura Alta , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Mutagênese Insercional , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Oxirredução , Estresse Oxidativo , Fenótipo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/fisiologia , Plastídeos/genética , Plastídeos/metabolismo , Fatores de Transcrição/genética , Terminação da Transcrição Genética , Transcriptoma
6.
Plant J ; 67(6): 1067-80, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21623974

RESUMO

We have identified a mitochondrial protein (RUG3) that is required for accumulation of mitochondrial respiratory chain complex I. RUG3 is related to human REGULATOR OF CHROMOSOME CONDENSATION 1 (RCC1) and Arabidopsis UV-B RESISTANCE 8 (UVR8). Although the family of RCC1-like proteins in Arabidopsis has over 20 members, UVR8 is the sole plant representative of this family to have been functionally characterized. Mitochondria from Arabidopsis plants lacking a functional RUG3 gene showed greatly reduced complex I abundance and activity. In contrast, accumulation of complexes III, IV and V of the oxidative phosphorylation system and the capacity for succinate-dependent respiration were unaffected. A comprehensive study of processes contributing to complex I biogenesis in rug3 mutants revealed that RUG3 is required for efficient splicing of the nad2 mRNA, which encodes a complex I subunit. A comparison of the formation of complex I assembly intermediates between rug3 and wild type mitochondria indicated that NAD2 enters the assembly pathway at an early stage. Remarkably, rug3 mutants displayed increased capacities for import of nucleus-encoded mitochondrial proteins into the organelle and showed moderately increased mitochondrial transcript levels. This observation is consistent with global transcript changes indicating enhanced mitochondrial biogenesis in the rug3 mutant in response to the complex I defect.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Regulação da Expressão Gênica de Plantas , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Mutação , Fosforilação , Splicing de RNA , RNA Mensageiro
7.
J Biol Chem ; 286(24): 21361-71, 2011 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21504904

RESUMO

In plant organelles, RNA editing is a post-transcriptional mechanism that converts specific cytidines to uridines in RNA of both mitochondria and plastids, altering the information encoded by the gene. The cytidine to be edited is determined by a cis-element surrounding the editing site that is specifically recognized and bound by a trans-acting factor. All the trans-acting editing factors identified so far in plant organelles are members of a large protein family, the pentatricopeptide repeat (PPR) proteins. We have identified the Organelle Transcript Processing 87 (OTP87) gene, which is required for RNA editing of the nad7-C24 and atp1-C1178 sites in Arabidopsis mitochondria. OTP87 encodes an E-subclass PPR protein with an unusually short E-domain. The recombinant protein expressed in Escherichia coli specifically binds to RNAs comprising 30 nucleotides upstream and 10 nucleotides downstream of the nad7-C24 and atp1-C1178 editing sites. The loss-of-function of OTP87 results in small plants with growth and developmental delays. In the otp87 mutant, the amount of assembled respiratory complex V (ATP synthase) is highly reduced compared with the wild type suggesting that the amino acid alteration in ATP1 caused by loss of editing at the atp1-C1178 site affects complex V assembly in mitochondria.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Mitocôndrias/metabolismo , NADH Desidrogenase/química , Peptídeos/química , Proteínas de Plantas/metabolismo , ATPases Translocadoras de Prótons/química , Edição de RNA , Proteínas de Ligação a RNA/fisiologia , Sítios de Ligação , Clorofila/metabolismo , Escherichia coli/metabolismo , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Modelos Genéticos , Mutação , Fenótipo , Estrutura Terciária de Proteína
8.
Plant Sci ; 180(4): 628-33, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21421411

RESUMO

Cultivated chickpea (Cicer arietinum) was crossed with its wild relatives from the genus Cicer to transfer favorable genes from the wider gene pool into the cultivar. Post-hybridization barriers led to yellowing and subsequent senescence from as early as 5 days after fertilization, however, the ovules of hybrid embryos could be rescued in vitro. Hybrids were classified as green, partially green or albino. The hybrid status of regenerated plantlets in vitro was confirmed by amplification of nuclear DNA markers. To check whether chloroplast development correlated with plastid DNA inheritance in these crosses, primers were designed using conserved plastid gene sequences from wild and cultivated species. All three possible plastid inheritance patterns were observed: paternal, maternal and biparental. This is the first report of biparental inheritance of plastid DNA in Cicer. No correlation was observed between parental origin of the plastid genome and degree of albinism, indicating that chloroplast development in hybrid genotypes was mostly influenced by nuclear factors.


Assuntos
Cicer/genética , Hibridização Genética , Sequência de Bases , Cicer/anatomia & histologia , Cicer/metabolismo , Cruzamentos Genéticos , DNA de Cloroplastos/química , Genomas de Plastídeos , Genótipo , Dados de Sequência Molecular , Sementes/anatomia & histologia , Sementes/genética , Sementes/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA
9.
Plant J ; 65(4): 532-42, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21288264

RESUMO

Over 20 proteins of the pentatricopeptide repeat (PPR) family have been demonstrated to be involved in RNA editing in plant mitochondria and chloroplasts. All of these editing factors contain a so-called 'E' domain that has been shown to be essential for editing to occur. The presumption has been that this domain recruits the (unknown) editing enzyme to the RNA. In this report, we show that not all putative E-class PPR proteins are directly involved in RNA editing. Disruption of the OTP70 gene leads to a strong defect in splicing of the plastid transcript rpoC1, leading to a virescent phenotype. The mutant has a chloroplast transcript pattern characteristic of a reduction in plastid-encoded RNA polymerase activity. The E domain of OTP70 is not required for splicing, and can be deleted or replaced by the E domain from the known editing factor CRR4 without loss of rpoC1 splicing. Furthermore, the E domain of OTP70 is incapable of inducing RNA editing when fused to the RNA binding domain of CRR4. We conclude that the truncated E domain of OTP70 is no longer functional in RNA editing, and that the protein has acquired a new function in promoting RNA splicing.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Edição de RNA , RNA de Plantas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Plastídeos/genética , Splicing de RNA
10.
J Biol Chem ; 285(42): 32192-9, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20682769

RESUMO

Splicing of plant organellar transcripts is facilitated by members of a large protein family, the pentatricopeptide repeat proteins. We have identified a pentatricopeptide repeat protein in a genetic screen for mutants resistant to inhibition of root growth by buthionine sulfoximine (BSO), an inhibitor of glutathione synthesis and consequently named BIR6 (BSO-insensitive roots 6). BIR6 is involved in splicing of intron 1 of the mitochondrial nad7 transcript. Loss-of-function mutations in BIR6 result in a strongly reduced accumulation of fully processed nad7 transcript. This affects assembly of Complex I and results in moderate growth retardation. In agreement with disruption of Complex I function, the genes encoding alternative NADH oxidizing enzymes are induced in the mutant, and the mutant plants are less sensitive to mannitol and salt stress. Mutation in the BIR6 gene allowed normal root growth in presence of BSO and strongly attenuated depletion of glutathione content at these conditions. The same phenotype was observed with other mutants affected in function of Complex I, thus reinforcing the importance of Complex I function for cellular redox homeostasis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Genes de Plantas , Íntrons , Mitocôndrias/genética , Splicing de RNA , Antimetabólitos/metabolismo , Arabidopsis/anatomia & histologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Butionina Sulfoximina/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Glutationa/genética , Glutationa/metabolismo , Mitocôndrias/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
11.
Theor Appl Genet ; 121(1): 87-103, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20182695

RESUMO

In higher plants, formate dehydrogenase (FDH, EC1.2.1.2.) catalyzes the NAD-linked oxidation of formate to CO(2), and FDH transcript accumulation has been reported after various abiotic stresses. By sequencing a Phaseolus vulgaris BAC clone encompassing a CC-NBS-LRR gene rich region of the B4 resistance gene cluster, we identified three FDH-encoding genes. FDH is present as a single copy gene in the Arabidopsis thaliana genome, and public database searches confirm that FDH is a low copy gene in plant genomes, since only 33 FDH homologs were identified from 27 plant species. Three independent prediction programs (Predotar, TargetP and Mitoprot) used on this large subset of 33 plant FDHs, revealed that mitochondrial localization of FDH might be the rule in higher plants. A phylogenetic analysis suggests a scenario of local FDH gene duplication in an ancestor of the Phaseoleae followed by another more recent duplication event after bean/soybean divergence. The expression levels of two common bean FDH genes under different treatments were investigated by quantitative RT-PCR analysis. FDH genes are differentially up-regulated after biotic and abiotic stresses (infection with the fungus Colletotrichum lindemuthianum, and dark treatment, respectively). The present study provides the first report of FDH transcript accumulation after biotic stress, suggesting the involvement of FDH in the pathogen resistance process.


Assuntos
Formiato Desidrogenases/genética , Formiato Desidrogenases/metabolismo , Regulação da Expressão Gênica de Plantas , Phaseolus/enzimologia , Phaseolus/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Formiato Desidrogenases/classificação , Genes de Plantas , Genoma de Planta , Imunidade Inata/genética , Dados de Sequência Molecular , Família Multigênica , Phaseolus/microbiologia , Filogenia , Proteínas de Plantas/classificação , Análise de Sequência de DNA , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...