Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; : e202401403, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38818578

RESUMO

Our society largely relies on inorganic semiconductor devices which are, so far, fabricated using expensive and complex processes requiring ultra-high vacuum equipment. Here we report on the possibility of growing a p-n junction taking advantage of electrochemical processes based on the use of aqueous solutions. The growth of the junction has been carried out using the Electrochemical Atomic Layer Deposition (E-ALD) technique, which allowed to sequentially deposit two different semiconductors, CdS and Cu2S, on an Ag(111) substrate, in a single procedure. The growth process was monitored in situ by Surface X-Ray Diffraction (SXRD) and resulted in the fabrication of a thin double-layer structure with a high degree of crystallographic order and a well-defined interface. The high-performance electrical characteristics of the device were analysed ex-situ and show the characteristic feature of a diode.

2.
Geobiology ; 20(6): 837-856, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35942584

RESUMO

Active hydrothermal travertine systems are ideal environments to investigate how abiotic and biotic processes affect mineralization mechanisms and mineral fabric formation. In this study, a biogeochemical characterization of waters, dissolved gases, and microbial mats was performed together with a mineralogical investigation on travertine encrustations occurring at the outflow channel of a thermal spring. The comprehensive model, compiled by means of TOUGHREACT computational tool from measured parameters, revealed that mineral phases were differently influenced by either abiotic conditions or microbially driven processes. Microbial mats are shaped by light availability and temperature gradient of waters flowing along the channel. Mineralogical features were homogeneous throughout the system, with euhedral calcite crystals, related to inorganic precipitation induced by CO2 degassing, and calcite shrubs associated with organomineralization processes, thus indicating an indirect microbial participation to the mineral deposition (microbially influenced calcite). The microbial activity played a role in driving calcite redissolution processes, resulting in circular pits on calcite crystal surfaces possibly related to the metabolic activity of sulfur-oxidizing bacteria found at a high relative abundance within the biofilm community. Sulfur oxidation might also explain the occurrence of gypsum crystals embedded in microbial mats, since gypsum precipitation could be induced by a local increase in sulfate concentration mediated by S-oxidizing bacteria, regardless of the overall undersaturated environmental conditions. Moreover, the absence of gypsum dissolution suggested the capability of microbial biofilm in modulating the mobility of chemical species by providing a protective envelope on gypsum crystals.


Assuntos
Fontes Termais , Compostos Alílicos , Bactérias/metabolismo , Biofilmes , Carbonato de Cálcio/química , Sulfato de Cálcio/química , Dióxido de Carbono/metabolismo , Fontes Termais/microbiologia , Minerais/metabolismo , Sulfetos , Enxofre/metabolismo
3.
J Hazard Mater ; 400: 123213, 2020 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-32593939

RESUMO

Volcanic ashes particles are subjected to substantial modification during explosive eruptions. The mineralogical and compositional changes have important consequences on the environment and human health. Nevertheless, the relationship between the speciation of iron (Fe) and the mineralogical composition and particle granulometry of the ashes, along with their interaction with water, are largely unknown. In particular, the Fe oxidation state and the possible formation of new Fe-bearing phases in presence of S, Cl, and F in the plume are key points to assess the impact of the ashes. Fragmental material ejected during volcanic activity (tephra) in 2013, was collected on the Mt. Etna (Italy) and investigated using a multi-technique approach that included conventional Electron Paramagnetic Resonance (EPR), high field EPR (HFEPR), EchoEPR, and Fe K-edge X-ray Absorption Spectroscopy (XAS). These element-selective techniques allowed obtaining a detailed information on the oxidation state and coordination environment of Fe, and of its speciation in the ash samples as a function of the granulometry. A complex mineralogical assemblage, consisting of variable amounts of nanometric crystalline Fe inclusions in a glass matrix, and of Fe-oxides and Fe-sulfur phases was revealed. A risk assessment of the ashes is attempted.

4.
Beilstein J Nanotechnol ; 10: 2073-2083, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31728255

RESUMO

The new generation of solar cells aims to overcome many of the issues created by silicon-based devices (e.g., decommissioning, flexibility and high-energy production costs). Due to the scarcity of the resources involved in the process and the need for the reduction of potential pollution, a greener approach to solar cell material production is required. Among others, the solvothermal approach for the synthesis of nanocrystalline Cu-Sn-S (CTS) materials fulfils all of these requirements. The material constraints must be considered, not only for the final product, but for the whole production process. Most works reporting the successful synthesis of CTS have employed surfactants, high pressure or noxious solvents. In this paper, we demonstrate the synthesis of nanocrystalline kuramite by means of a simpler, greener and scalable solvothermal synthesis. We exploited a multianalytical characterization approach (X-ray diffraction, extended X-ray absorption fine structure, field emission scanning electron microscopy, Raman spectroscopy and electronic microprobe analysis (EMPA)) to discriminate kuramite from other closely related polymorphs. Moreover, we confirmed the presence of structural defects due to a relevant antisite population.

5.
Sci Rep ; 9(1): 6531, 2019 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-31024082

RESUMO

The occurrence of highly severe silica-related diseases among the resin- and silica-based artificial stone workers was claimed, associated to an extremely short latency. High levels of exposure and intrinsic properties of AS are thought to modulate the development of silicosis and auto-immune diseases. This study compares parent materials and processed dusts, to shed light on changes of AS occurring in the manufacturing process, through an XRF, EPR and XAS investigation. We point out the extremely wide variability of the materials, the occurrence of chemical signatures impressed by the processing techniques, and the unprecedented generation of stable radicals associated to the lysis of the Si-O chemical bond inside the resin coated respirable crystalline silica. These results suggest that the AS processing in industrial stone workshops can create respirable dusts with peculiar physical and chemical properties, to be correlated to the observed clinical evidences.


Assuntos
Saúde , Dióxido de Silício/química , Espectroscopia de Ressonância de Spin Eletrônica , Análise de Fourier , Humanos , Íons , Minerais/química , Pós , Espectrometria por Raios X , Elementos de Transição
6.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 74(Pt 5): 405-415, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30297546

RESUMO

The crystal structure of Cu5FeS4 (bornite) has been investigated using synchrotron X-ray powder diffraction at temperatures between 10 and 275 K. Diffraction data confirm that bornite crystallizes in the orthorhombic space group Pbca at 275 K. The unit-cell volume decreases continuously on cooling, but undergoes an abrupt contraction below ∼65 K, where a first-order Pbca→Pca21 structural transition takes place. The primary active mode yielding the observed ordered structure corresponds to the irreducible representation Γ2-, with wavevector (0,0,0). Pair distribution function analysis shows strong discrepancies between the local and the average structure. The average Fe-S bond length obtained through the EXAFS local probe is consistent with the values independently provided by X-ray powder diffraction data, strongly supporting the preferred location of Fe.

7.
Sci Rep ; 7(1): 1615, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28487534

RESUMO

Electrochemical Atomic Layer Deposition (E-ALD) technique has demonstrated to be a suitable process for growing compound semiconductors, by alternating the under-potential deposition (UPD) of the metallic element with the UPD of the non-metallic element. The cycle can be repeated several times to build up films with sub-micrometric thickness. We show that it is possible to grow, by E-ALD, Cu2S ultra-thin films on Ag(111) with high structural quality. They show a well ordered layered crystal structure made on alternating pseudohexagonal layers in lower coordination. As reported in literature for minerals in the Cu-S compositional field, these are based on CuS3 triangular groups, with layers occupied by highly mobile Cu ions. This structural model is closely related to the one of the low chalcocite. The domain size of such films is more than 1000 Å in lateral size and extends with a high crystallinity in the vertical growth direction up to more than 10 nm. E-ALD process results in the growth of highly ordered and almost unstrained ultra-thin films. This growth can lead to the design of semiconductors with optimal transport proprieties by an appropriate doping of the intra metallic layer. The present study enables E-ALD as an efficient synthetic route for the growth of semiconducting heterostructures with tailored properties.

8.
Environ Pollut ; 227: 83-88, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28458249

RESUMO

This study determined, by means of X-ray absorption near-edge structure (XANES) spectroscopy, the speciation of mercury (Hg) in black pine (Pinus nigra) barks from Monte Amiata, that were previously shown to contain exceptionally high (up to some mg kg-1) Hg contents because of the proximity to the former Hg mines and roasting plants. Linear fit combination (LCF) analysis of the experimental spectra compared to a large set of reference compounds showed that all spectra can be fitted by only four species: ß-HgS (metacinnabar), Hg-cysteine, Hg bound to tannic acid, and Hg0. The first two are more widespread, whereas the last two occur in one sample only; the contribution of organic species is higher in deeper layers of barks than in the outermost ones. We interpret these results to suggest that, during interaction of barks with airborne Hg, the metal is initially mechanically captured at the bark surface as particulate, or physically adsorbed as gaseous species, but eventually a stable chemical bond is established with organic ligands of the substrate. As a consequence, we suggest that deep bark Hg may be a good proxy for long term time-integrated exposure, while surface bark Hg is more important for recording short term events near Hg point sources.


Assuntos
Monitoramento Ambiental , Mercúrio/análise , Pinus/química , Poluentes do Solo/análise , Espectroscopia por Absorção de Raios X , Adsorção , Itália , Mineração , Raios X
9.
Angew Chem Int Ed Engl ; 55(20): 6004-7, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27062251

RESUMO

One of the biggest obstacles to the dissemination of fuel cells is their cost, a large part of which is due to platinum (Pt) electrocatalysts. Complete removal of Pt is a difficult if not impossible task for proton exchange membrane fuel cells (PEM-FCs). The anion exchange membrane fuel cell (AEM-FC) has long been proposed as a solution as non-Pt metals may be employed. Despite this, few examples of Pt-free AEM-FCs have been demonstrated with modest power output. The main obstacle preventing the realization of a high power density Pt-free AEM-FC is sluggish hydrogen oxidation (HOR) kinetics of the anode catalyst. Here we describe a Pt-free AEM-FC that employs a mixed carbon-CeO2 supported palladium (Pd) anode catalyst that exhibits enhanced kinetics for the HOR. AEM-FC tests run on dry H2 and pure air show peak power densities of more than 500 mW cm(-2) .

10.
J Hazard Mater ; 312: 18-27, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27015375

RESUMO

Industrial processing of materials containing quartz induces physico-chemical modifications that contribute to the variability of quartz hazard in different plants. Here, modifications affecting a quartz-rich sand during cast iron production, have been investigated. Composition, morphology, presence of radicals associated to quartz and reactivity in free radical generation were studied on a raw sand and on a dust recovered after mould dismantling. Additionally, cytotoxicity of the processed dust and ROS and NO generation were evaluated on MH-S macrophages. Particle morphology and size were marginally affected by casting processing, which caused only a slight increase of the amount of respirable fraction. The raw sand was able to catalyze OH and CO2(-) generation in cell-free test, even if in a lesser extent than the reference quartz (Min-U-Sil), and shows hAl radicals, conventionally found in any quartz-bearing raw materials. Enrichment in iron and extensive coverage with amorphous carbon were observed during processing. They likely contributed, respectively, to increasing the ability of processed dust to release CO2- and to suppressing OH generation respect to the raw sand. Carbon coverage and repeated thermal treatments during industrial processing also caused annealing of radiogenic hAl defects. Finally, no cellular responses were observed with the respirable fraction of the processed powder.


Assuntos
Macrófagos Alveolares/efeitos dos fármacos , Quartzo/química , Animais , Poeira , Ferro , Camundongos , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Dióxido de Silício
11.
Scand J Work Environ Health ; 42(1): 80-5, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26659652

RESUMO

OBJECTIVES: DAS was an artificial clay which, once molded, hardened at room temperature. It was largely used as a toy between 1963 and 1975 in Italy, Netherlands, Germany, UK and Norway. This case report describes and reports the presence of asbestos in DAS. METHODS: We investigated the presence of asbestos in DAS using light and electron microscopy on samples of the original material. We searched administrative documents at the State Archive of Turin and conducted interviews with past employees on annual production, suppliers, and purchasers. RESULTS: The analytical tests confirmed the presence of asbestos fibers in DAS: about 30% of its composition. The documents found at the State Archive confirmed the annual purchase of hundreds tons of raw asbestos from the Amiantifera di Balangero, the Italian asbestos mine. DAS was found to be used also within craftsmanship. CONCLUSIONS: Asbestos fibers in DAS may have caused exposure to production workers and a variety of users, including artists, teachers, and children. Over 13 years, about 55 million packs of DAS were produced and sold. The number of users is difficult to estimate but may have been in the order of millions. In Italy, a specific question on the use of DAS has been included in a routinely used mesothelioma questionnaire. As DAS was exported to other countries, our findings suggest that mesothelioma patients should be asked about their past use of DAS, in particular individuals not reporting a clear past asbestos exposure. Additionally, this discovery shows the incompleteness of records on asbestos uses and suggests to test items, including toys, imported from countries where asbestos is not forbidden.


Assuntos
Silicatos de Alumínio/toxicidade , Amianto/toxicidade , Jogos e Brinquedos/lesões , Silicatos de Alumínio/história , Arte/história , Amianto/história , Argila , Qualidade de Produtos para o Consumidor , Europa (Continente) , Feminino , História do Século XX , História do Século XXI , Humanos , Masculino , Mesotelioma/epidemiologia , Mesotelioma/etiologia , Doenças Profissionais/etiologia , Exposição Ocupacional/efeitos adversos , Professores Escolares
12.
Environ Sci Technol ; 47(12): 6231-8, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23738848

RESUMO

Recent studies demonstrated that synthetic calcite may host considerable amounts of arsenic (As). In this paper, the concentration of As in natural calcite was determined using two novel, specifically designed, sequential extraction procedures. In addition, the oxidation state of As and its distribution between calcite and coexisting Fe-oxyhydroxides was unravelled by µXRF elemental mapping and As K-edge µXAS spectroscopy. Our results conclusively demonstrate that arsenic can be found in natural calcite up to 2 orders of magnitude over the normal crustal As abundances. Because of the large diffusion of calcite in the environment, this phase may exert an important control on As geochemistry, mobility, and bioavailability.


Assuntos
Arsênio/química , Carbonato de Cálcio/química
13.
J Hazard Mater ; 244-245: 303-10, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23270954

RESUMO

The existence of a lot of worldwide pentachlorophenol-contaminated sites has induced scientists to concentrate their effort in finding ways to degrade it. Therefore, an effective tool to decompose it from soil mixtures is needed. In this work the efficiency of the phyllomanganate birnessite (KBi) in degrading pentachlorophenol (PCP) through mechanochemical treatments was investigated. To this purpose, a synthesized birnessite and the pollutant were ground together in a high energy mill. The ground KBi-PCP mixtures and the liquid extracts were analyzed to demonstrate that mechanochemical treatments are more efficient in removing PCP than a simple contact between the synthesized birnessite and the pollutant, both in terms of time and extent. The mechanochemically induced PCP degradation mainly occurs through the formation of a surface monodentate inner-sphere complex between the phenolic group of the organic molecules and the structural Mn(IV). This is indicated by the changes induced in birnessite MnO(6) layers as a consequence of the prolonged milling with the pollutant. This mechanism includes the Mn(IV) reduction, the consequent formation of Mn(III) and new vacancies, and free Mn(2+) ions release. The PCP degradation extent is limited by the presence of chloro-substituents on the aromatic ring.


Assuntos
Óxidos/química , Pentaclorofenol/química , Poluentes do Solo/química , Catálise , Difração de Pó , Gerenciamento de Resíduos/métodos , Difração de Raios X
14.
Angew Chem Int Ed Engl ; 51(34): 8500-4, 2012 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-22807065

RESUMO

Improved performance through milling: A method for enhancing the catalytic activity of supported metal nanoparticles is reported. This method enhances the activity for the ethanol electro-oxidation of a supported palladium catalyst. The much higher catalytic performance is ascribed to the increased electrochemically active surface area as well as the generation of high-index facets at the milled nanoparticle surface.

15.
J Hazard Mater ; 201-202: 148-54, 2012 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-22178279

RESUMO

The aim of this work is to investigate the efficiency of the phyllomanganate birnessite in degrading catechol after mechanochemical treatments. A synthesized birnessite and the organic molecule were grounded together in a high energy mill and the xenobiotic-mineral surface reactions induced by the grinding treatment have been investigated by means of X-ray powder diffraction, X-ray fluorescence, thermal analysis and spectroscopic techniques as well as high-performance liquid chromatography and voltammetric techniques. If compared to the simple contact between the birnessite and the organic molecule, mechanochemical treatments have revealed to be highly efficient in degrading catechol molecules, in terms both of time and extent. Due to the two phenolic groups of catechol and the small steric hindrance of the molecule, the extent of the mechanochemically induced degradation of catechol onto birnessite surfaces is quite high. The degradation mechanism mainly occurs via a redox reaction. It implies the formation of a surface bidentate inner-sphere complex between the phenolic group of the organic molecules and the Mn(IV) from the birnessite structure. Structural changes occur on the MnO(6) layers of birnessite as due to the mechanically induced surface reactions: reduction of Mn(IV), consequent formation of Mn(III) and new vacancies, and free Mn(2+) ions production.


Assuntos
Catecóis/isolamento & purificação , Poluentes Ambientais/isolamento & purificação , Fenômenos Mecânicos , Óxidos/química , Eliminação de Resíduos/métodos , Físico-Química , Cromatografia Líquida de Alta Pressão , Análise Diferencial Térmica , Recuperação e Remediação Ambiental/métodos , Oxirredução , Espectroscopia Fotoeletrônica , Propriedades de Superfície , Termogravimetria , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...