Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 140: 106794, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37659146

RESUMO

Designing and discovering compounds for dual-target inhibitors is challenging to synthesize new, safer, and more efficient drugs than single-target drugs, especially to treat multifactorial diseases such as cancer. The simultaneous regulation of multiple targets might represent an alternative synthetic approach to optimize patient compliance and tolerance, minimizing the risk of target-based drug resistance due to the modulation of a few targets. To this end, we conceived for the first time the design and synthesis of dual-ligands σR/HDACi to evaluate possible employment as innovative candidates to address this complex disease. Among all synthesized compounds screened for several tumoral cell lines, compound 6 (Kiσ1R = 38 ± 3.7; Kiσ2R = 2917 ± 769 and HDACs IC50 = 0.59 µM) is the most promising candidate as an antiproliferative agent with an IC50 of 0.9 µM on the HCT116 cell line and no significant toxicity to normal cells. Studies of molecular docking, which confirmed the affinity over σ1R and a pan-HDACs inhibitory behavior, support a possible balanced affinity and activity between both targets.


Assuntos
Sistemas de Liberação de Medicamentos , Humanos , Ligantes , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Células HCT116
2.
Biomedicines ; 11(4)2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37189822

RESUMO

Diabetic polyneuropathy is characterized by structural abnormalities, oxidative stress, and neuroinflammation. The current study aimed to determine the antinociceptive effects of isoeugenol and eugenol and their combinations in neuropathic pain resulting from streptozotocin (STZ)-induced diabetes and neuroinflammation. Female SD rats were categorized into normal control, diabetic control, and treatment groups. On the 28th day and 45th day, behavioral studies (allodynia and hyperalgesia) were performed to analyze the development and protection of diabetic polyneuropathy. The levels of inflammatory and oxidative mediators, such as superoxide dismutase (SOD), tumor necrosis factor-α (TNF-α), catalase, reduced glutathione, and thiobarbituric acid reactive substances (TBARS), were estimated. In addition, the level of nerve growth factor (NGF) was estimated at the end of the study in different groups. The anti-NGF treatment decreased its upregulation in the dorsal root ganglion significantly. The results showed that isoeugenol, eugenol, and their combination have therapeutic potential against neuronal and oxidative damage induced by diabetes. In particular, both compounds significantly affected behavioral function in treated rats and showed neuroprotection against diabetic neuropathy, and their combination had synergistic effects.

3.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36768301

RESUMO

Pancreatic cancer (PC) is one of the deadliest malignancies, with an increasing incidence and limited response to current therapeutic options. Therefore, more effective and low-toxic agents are needed to improve PC patients' outcomes. Resveratrol (RSV) is a natural polyphenol with multiple biological properties, including anticancer effects. In this study, we explored the antiproliferative activities of newly synthetized RSV analogues in a panel of PC cell lines and evaluated the physicochemical properties of the most active compound. This derivative exhibited marked antiproliferative effects in PC cells through mechanisms involving DNA damage, apoptosis induction, and interference in cell cycle progression, as assessed using flow cytometry and immunoblot analysis of cell cycle proteins, PARP cleavage, and H2AX phosphorylation. Notably, the compound induced a consistent reduction in the PC cell subpopulation with a CD133+EpCAM+ stem-like phenotype, paralleled by dramatic effects on cell clonogenicity. Moreover, the RSV derivative had negligible toxicity against normal HFF-1 cells and, thus, good selectivity index values toward PC cell lines. Remarkably, its higher lipophilicity and stability in human plasma, as compared to RSV, might ensure a better permeation along the gastrointestinal tract. Our results provide insights into the mechanisms of action contributing to the antiproliferative activity of a synthetic RSV analogue, supporting its potential value in the search for effective and safe agents in PC treatment.


Assuntos
Células-Tronco Neoplásicas , Neoplasias Pancreáticas , Polifenóis , Resveratrol , Humanos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Pancreáticas/patologia , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Resveratrol/análogos & derivados , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/fisiologia , Neoplasias Pancreáticas
4.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36498888

RESUMO

Nitric oxide (NO) is a key messenger in physiological and pathological processes in mammals. An excessive NO production is associated with pathological conditions underlying the inflammation response as a trigger. Among others, dental pulp inflammation results from the invasion of dentin by pathogenic bacteria. Vital functions of pulp mesenchymal stem cells (DPSCs, dental pulp stem cells), such as mineralization, might be affected by the inducible NOS (iNOS) upregulation. In this context, the iNOS selective inhibition can be considered an innovative therapeutic strategy to counteract inflammation and to promote the regeneration of the dentin-pulp complex. The present work aims at evaluating two acetamidines structurally related to the selective iNOS inhibitor 1400W, namely CM544 and FAB1020, in a model of LPS-stimulated primary DPSCs. Our data reveal that CM544 and even more FAB1020 are promising anti-inflammatory compounds, decreasing IL-6 secretion by enhancing CD73 expression-levels, a protein involved in innate immunity processes and thus confirming an immunomodulatory role of DPSCs. In parallel, cell mineralization potential is retained in the presence of compounds as well as VEGF secretion, and thus their angiogenetic potential. Data presented lay the ground for further investigation on the anti-inflammatory potential of acetamidines selectively targeting iNOS in a clinical context.


Assuntos
Inflamação , Óxido Nítrico Sintase Tipo II , Óxido Nítrico , Células-Tronco , Humanos , Amidinas , Polpa Dentária/citologia , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Células-Tronco/citologia , Calcificação Fisiológica
5.
Molecules ; 27(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35956831

RESUMO

PPARγ agonists are implicated in the regulation of diabetes and metabolic syndrome and have therapeutic potential in brain disorders. PPARγ modulates appetite through its central effects, especially on the hypothalamic arcuate nucleus (ARC). Previous studies demonstrated that the small molecule GL516 is a PPARγ agonist able to reduce oxidative stress and apoptosis with a potential neuroprotective role. Herein, we investigated the effects of GL516, in vitro and ex vivo, on the levels of hypothalamic dopamine (DA) and serotonin (5-HT). The gene expressions of neuropeptide Y, CART, AgRP, and POMC, which play master roles in the neuroendocrine regulation of feeding behavior and energy balance, were also evaluated. HypoE22 cells were treated with H2O2 (300 µM) for 2 h e 30' and with different concentrations of GL516 (1 nM-100 µM). The cell viability was evaluated after 24 and 48 h of culturing using the MTT test. DA and 5-HT levels in the HypoE22 cell supernatants were analyzed through HPLC; an ex vivo study on isolated hypothalamic specimens challenged with scalar concentrations of GL516 (1-100 µM) and with pioglitazone (10 µM) was carried out. The gene expressions of CART, NPY, AgRP, and POMC were also determined by a quantitative real-time PCR. The results obtained showed that GL516 was able to reduce DA and 5-HT turnover; moreover, it was effective in stimulating NPY and AgRP gene expressions with a concomitant reduction in CART and POMC gene expressions. These results highlight the capability of GL516 to modulate neuropeptide pathways deeply involved in appetite control suggesting an orexigenic effect. These findings emphasize the potential use of GL516 as a promising candidate for therapeutical applications in neurodegenerative diseases associated with the reduction in food intake and stimulation of catabolic pathways.


Assuntos
PPAR gama , Pró-Opiomelanocortina , Proteína Relacionada com Agouti/metabolismo , Proteína Relacionada com Agouti/farmacologia , Peróxido de Hidrogênio/farmacologia , Hipotálamo/metabolismo , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Pró-Opiomelanocortina/farmacologia , Serotonina/metabolismo , Serotonina/farmacologia
6.
Plants (Basel) ; 11(2)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35050121

RESUMO

Mentha spicata is one of the most popular species in the genus, and it is of great interest as a gastrointestinal and sedative agent in the folk medicine system. In this study, different M. spicata extracts, obtained by the use of four solvents (hexane, chloroform, acetone and acetone/water) were chemically characterized using HPLC-ESI-MS n, which allowed for identification of 27 phenolic compounds. The extracts' antioxidant and enzyme inhibitory properties were investigated. In addition, neuroprotective effects were evaluated in hypothalamic HypoE22 cells, and the ability of the extracts to prevent the hydrogen peroxide-induced degradation of dopamine and serotonin was observed. The best antioxidant effect was achieved for all the extraction methods using acetone/water as a solvent. These extracts were the richest in acacetin, eriodictyol, hesperidin, sagerinic acid, naringenin, luteolin, chlorogenic acid, chrysoeriol and apigenin. The intrinsic antioxidant and enzyme inhibition properties of the acetone/water extract could also explain, albeit partially, its efficacy in preventing prostaglandin E2 overproduction and dopamine depletion (82.9% turnover reduction) in HypoE22 cells exposed to hydrogen peroxide. Thus, our observations can provide a scientific confirmation of the neuromodulatory and neuroprotective effects of M. spicata.

7.
Molecules ; 26(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34684793

RESUMO

Vitis vinifera (grape) contains various compounds with acknowledged phytochemical and pharmacological properties. Among the different parts of the plant, pomace is of particular interest as a winemaking industry by-product. A characterization of the water extract from grape pomace from Montepulciano d'Abruzzo variety (Villamagna doc) was conducted, and the bioactive phenolic compounds were quantified through HPLC-DAD-MS analysis. HypoE22, a hypothalamic cell line, was challenged with an oxidative stimulus and exposed to different concentrations (1 µg/mL-1 mg/mL) of the pomace extract for 24, 48, and 72 h. In the same conditions, cells were exposed to the sole catechin, in a concentration range (5-500 ng/mL) consistent with the catechin level in the extract. Cell proliferation was investigated by MTT assay, dopamine release through HPLC-EC method, PGE2 amount by an ELISA kit, and expressions of neurotrophin brain-derived neurotrophic factor (BDNF) and of cyclooxygenase-2 (COX-2) by RT-PCR. The extract reverted the cytotoxicity exerted by the oxidative stimulus at all the experimental times in a dose-dependent manner, whereas the catechin was able to revert the oxidative stress-induced depletion of dopamine 48 h and 72 h after the stimulus. The extract and the catechin were also effective in preventing the downregulation of BDNF and the concomitant upregulation of COX-2 gene expression. In accordance, PGE2 release was augmented by the oxidative stress conditions and reverted by the administration of the water extract from grace pomace and catechin, which were equally effective. These results suggest that the neuroprotection induced by the extract could be ascribed, albeit partially, to its catechin content.


Assuntos
Fármacos Neuroprotetores/isolamento & purificação , Fármacos Neuroprotetores/farmacologia , Fenóis/farmacologia , Vitis/química , Animais , Artemia/efeitos dos fármacos , Linhagem Celular , Daphnia/efeitos dos fármacos , Humanos , Hipotálamo/citologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Neuroproteção/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fenóis/química , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ratos
8.
Biomolecules ; 11(2)2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525407

RESUMO

Propolis, a product of the honey bee, has been used in traditional medicine for many years. A hydrophobic bioactive polyphenolic ester, caffeic acid phenethyl ester (CAPE), is one of the most extensively investigated active components of propolis. Several studies have indicated that CAPE has a broad spectrum of pharmacological activities as anti-oxidant, anti-inflammatory, anti-viral, anti-fungal, anti-proliferative, and anti-neoplastic properties. This review largely describes CAPE neuroprotective effects in many different conditions and summarizes its molecular mechanisms of action. CAPE was found to have a neuroprotective effect on different neurodegenerative disorders. At the basis of these effects, CAPE has the ability to protect neurons from several underlying causes of various human neurologic diseases, such as oxidative stress, apoptosis dysregulation, and brain inflammation. CAPE can also protect the nervous system from some diseases which negatively affect it, such as diabetes, septic shock, and hepatic encephalopathy, while numerous studies have demonstrated the neuroprotective effects of CAPE against adverse reactions induced by different neurotoxic substances. The potential role of CAPE in protecting the central nervous system (CNS) from secondary injury following various CNS ischemic conditions and CAPE anti-cancer activity in CNS is also reviewed. The structure-activity relationship of CAPE synthetic derivatives is discussed as well.


Assuntos
Ácidos Cafeicos/uso terapêutico , Álcool Feniletílico/análogos & derivados , Própole/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Animais , Anti-Inflamatórios/química , Antifúngicos/química , Antioxidantes/química , Antivirais/química , Apoptose , Encéfalo/efeitos dos fármacos , Ácidos Cafeicos/química , Humanos , Inflamação , Isquemia/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Doença de Parkinson/tratamento farmacológico , Álcool Feniletílico/química , Álcool Feniletílico/uso terapêutico , Própole/química , Transtornos Psicóticos/tratamento farmacológico , Convulsões/tratamento farmacológico
9.
Antioxidants (Basel) ; 10(1)2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33401488

RESUMO

Industrial hemp is a multiuse crop whose phytocomplex includes terpenophenolics and flavonoids. In the present study, the phenolic and terpenophenolic compounds were assayed in the water extract of the hemp variety Futura 75. Protective effects were also investigated in human fibroblast and keratinocytes and isolate mouse skin specimens, which were exposed to hydrogen peroxide and/or to the extract (1-500 µg/mL). The results of phytochemical analysis suggested the cannabidiol, cannabidiolic acid and rutin as the prominent phytocompounds. In the in vitro system represented by human keratinocytes and fibroblasts, the hemp extract was found to be able to protect cells from cytotoxicity and apoptosis induced by oxidative stress. Moreover, modulatory effects on IL-6, a key mediator in skin proliferation, were found. In isolated rat skin, the extract reduced hydrogen peroxide-induced l-dopa turnover, prostaglandin-E2 production and the ratio kynurenine/tryptpophan, thus corroborating anti-inflammatory/antioxidant effects. The in silico docking studies also highlighted the putative interactions between cannabidiol, cannabidiolic acid and rutin with tyrosinase and indoleamine-2,3-dioxygenase, involved in l-dopa turnover and tryptophan conversion in kynurenine, respectively. In conclusion, the present findings showed the efficacy of hemp water extract as a skin protective agent. This could be partly related to the extract content in cannabidiol, cannabidiolic acid and rutin.

10.
Molecules ; 26(1)2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374525

RESUMO

Tanacetum parthenium (feverfew) has traditionally been employed as a phytotherapeutic remedy in the treatment of migraine. In this study, a commercial T. parthenium water extract was investigated to explore its anti-inflammatory and neuromodulatory effects. Isolated mouse cortexes were exposed to a K+ 60 mM Krebs-Ringer buffer and treated with T. parthenium water extract. The prostaglandin E2 (PGE2) level, brain-derived neurotrophic factor (BDNF), interleukin-10 (IL-10), and IL-1ß gene expression were evaluated in the cortex. The effects on dopamine (DA) release and dopamine transporter (DAT) gene expression were assayed in hypothalamic HypoE22 cells. A bioinformatics analysis was conducted to further investigate the mechanism of action. The extract was effective in reducing cortex PGE2 release and IL-1ß gene expression. In the same experimental system, IL-10 and BDNF gene expressions increased, and in HypoE22 cells, the extract decreased the extracellular dopamine level and increased the DAT gene expression due to the direct interaction of parthenolide with the DAT. Overall, the present findings highlight the efficacy of T. parthenium water extract in controlling the inflammatory pathways that occur during cortical-spreading depression. Additionally, the inhibition of the hypothalamic DA release observed in this study further supports the role of dopaminergic pathways as key targets for novel pharmacological approaches in the management of migraine attacks.


Assuntos
Anti-Inflamatórios/farmacologia , Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Tanacetum parthenium/química , Água/química , Animais , Simulação por Computador , Citocinas/genética , Perfilação da Expressão Gênica , Hipotálamo/metabolismo , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL
11.
Antioxidants (Basel) ; 9(6)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32492880

RESUMO

Matrix metalloproteinases (MMPs) play a crucial role in tumor angiogenesis, and metastasis. 4'-geranyloxyferulic acid (GOFA) has anti-tumor and anti-inflammatory proprieties. Herein, we aimed to determine whether this compound affects cell survival, invasion, and migration through reactive oxygen species (ROS)-mediated MMPs activation of extracellular signal-regulated kinases (ERKs) and p38 signaling in lymphocytic histiocytoma (U937) and colorectal cancer (HCT116) cells. We observed that lipopolysaccharide (LPS) stimulated U937 and HCT116 cells presented abnormal cell proliferation and increased metalloproteinase (MMP-9) activity and expression. Non-cytotoxic doses of GOFA blunted matrix invasive potential by reducing LPS-induced MMP-9 expression and cell migration via inhibiting ROS/ ERK pathway. GOFA also attenuated apoptosis and cell senescence. Our findings indicate that GOFA, inhibiting cancer cell proliferation and migration, could be therapeutically beneficial to prevent tumor metastasis.

12.
Int J Mol Sci ; 21(10)2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32443623

RESUMO

Cannabidiol (CBD) and cannabigerol (CBG) are Cannabis sativa terpenophenols. Although CBD's effectiveness against neurological diseases has already been demonstrated, nothing is known about CBG. Therefore, a comparison of the effects of these compounds was performed in two experimental models mimicking the oxidative stress and neurotoxicity occurring in neurological diseases. Rat astrocytes were exposed to hydrogen peroxide and cell viability, reactive oxygen species production and apoptosis occurrence were investigated. Cortexes were exposed to K+ 60 mM depolarizing stimulus and serotonin (5-HT) turnover, 3-hydroxykinurenine and kynurenic acid levels were measured. A proteomic analysis and bioinformatics and docking studies were performed. Both compounds exerted antioxidant effects in astrocytes and restored the cortex level of 5-HT depleted by neurotoxic stimuli, whereas sole CBD restored the basal levels of 3-hydroxykinurenine and kynurenic acid. CBG was less effective than CBD in restoring the levels of proteins involved in neurotransmitter exocytosis. Docking analyses predicted the inhibitory effects of these compounds towards the neurokinin B receptor. Conclusion: The results in the in vitro system suggest brain non-neuronal cells as a target in the treatment of oxidative conditions, whereas findings in the ex vivo system and docking analyses imply the potential roles of CBD and CBG as neuroprotective agents.


Assuntos
Antioxidantes/farmacologia , Astrócitos/efeitos dos fármacos , Canabidiol/farmacologia , Canabinoides/farmacologia , Córtex Cerebral/metabolismo , Fármacos Neuroprotetores/farmacologia , Animais , Apoptose , Astrócitos/metabolismo , Astrócitos/fisiologia , Córtex Cerebral/fisiologia , Estresse Oxidativo , Proteômica , Ratos , Serotonina/metabolismo
13.
Cells ; 9(5)2020 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-32456308

RESUMO

Human perinatal stem cells (SCs) can be isolated from fetal annexes without ethical or safety limitations. They are generally considered multipotent; nevertheless, their biological characteristics are still not fully understood. The aim of this study was to investigate the pluripotency potential of human perinatal SCs as compared to human induced pluripotent stem cells (hiPSCs). Despite the low expression of the pluripotent factors NANOG, OCT4, SOX2, and C-KIT in perinatal SC, we observed minor differences in the promoters DNA-methylation profile of these genes with respect to hiPSCs; we also demonstrated that in perinatal SCs miR-145-5p had an inverse trend in comparison to these stemness markers, suggesting that NANOG, OCT4, and SOX2 were regulated at the post-transcriptional level. The reduced expression of stemness markers was also associated with shorter telomere lengths and shift of the oxidative metabolism between hiPSCs and fetal annex-derived cells. Our findings indicate the differentiation ability of perinatal SCs might not be restricted to the mesenchymal lineage due to an epigenetic barrier, but other regulatory mechanisms such as telomere shortening or metabolic changes might impair their differentiation potential and challenge their clinical application.


Assuntos
Epigênese Genética , Células-Tronco/citologia , Células-Tronco/metabolismo , Cromossomos Humanos/metabolismo , Metilação de DNA/genética , Regulação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Recém-Nascido , MicroRNAs/genética , MicroRNAs/metabolismo , Regiões Promotoras Genéticas , Homeostase do Telômero
14.
Int J Mol Sci ; 21(8)2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316424

RESUMO

Bone loss raises great concern in numerous situations, such as ageing and many diseases and in both orthopedic and dentistry fields of application, with an extensive impact on health care. Therefore, it is crucial to understand the mechanisms and the determinants that can regulate osteogenesis and ensure bone balance. Autophagy is a well conserved lysosomal degradation pathway, which is known to be highly active during differentiation and development. This review provides a revision of the literature on all the exogen factors that can modulate osteogenesis through autophagy regulation. Metal ion exposition, mechanical stimuli, and biological factors, including hormones, nutrients, and metabolic conditions, were taken into consideration for their ability to tune osteogenic differentiation through autophagy. In addition, an exhaustive overview of biomaterials, both for orthopedic and dentistry applications, enhancing osteogenesis by modulation of the autophagic process is provided as well. Already investigated conditions regulating bone regeneration via autophagy need to be better understood for finely tailoring innovative therapeutic treatments and designing novel biomaterials.


Assuntos
Materiais Biocompatíveis/farmacologia , Fatores Biológicos/farmacologia , Metais/farmacologia , Osteogênese/efeitos dos fármacos , Autofagia , Diferenciação Celular , Odontologia , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Ortopedia , Transdução de Sinais/efeitos dos fármacos
15.
Antioxidants (Basel) ; 9(2)2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32085616

RESUMO

In the present study, we investigated the water extract of Harpagophytum procumbens DC. ex Meisn. in an experimental model of inflammatory bowel diseases (IBDs). Additionally, a microbiological investigation was carried out to discriminate the efficacy against bacterial and fungal strains involved in IBDs. Finally, an untargeted proteomic analysis was conducted on more than one hundred colon proteins involved in tissue morphology and metabolism. The extract was effective in blunting the production of oxidative stress and inflammation, including serotonin, prostaglandins, cytokines, and transcription factors. Additionally, the extract inhibited the growth of Candida albicans and C. tropicalis. The extract was also able to exert a pro-homeostatic effect on the levels of a wide plethora of colon proteins, thus corroborating a protective effect. Conversely, the supraphysiological downregulation of cytoskeletal-related proteins involved in tissue morphology and antimicrobial barrier function suggests a warning in the use of food supplements containing H. procumbens extracts.

16.
Antioxidants (Basel) ; 9(1)2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31941059

RESUMO

BACKGROUND: Cannabidiol (CBD) and cannabigerol (CBG) are non-psychotropic terpenophenols isolated from Cannabis sativa, which, besides their anti-inflammatory/antioxidant effects, are able to inhibit, the first, and to stimulate, the second, the appetite although there are no studies elucidating their role in the hypothalamic appetite-regulating network. Consequently, the aim of the present research is to investigate the role of CBD and CBG in regulating hypothalamic neuromodulators. Comparative evaluations between oxidative stress and food intake-modulating mediators were also performed. METHODS: Rat hypothalamic Hypo-E22 cells and isolated tissues were exposed to either CBD or CBG, and the gene expressions of neuropeptide (NP)Y, pro-opiomelanocortin (POMC) and fatty acid amide hydrolase were assessed. In parallel, the influence of CBD on the synthesis and release of dopamine (DA), norepinephrine (NE), and serotonin (5-HT) was evaluated. The 3-hydroxykinurenine/kinurenic acid (3-HK/KA) ratio was also determined. RESULTS: Both CBD and CBG inhibited NPY and POMC gene expression and decreased the 3-HK/KA ratio in the hypothalamus. The same compounds also reduced hypothalamic NE synthesis and DA release, whereas the sole CBD inhibited 5-HT synthesis. CONCLUSION: The CBD modulates hypothalamic neuromodulators consistently with its anorexigenic role, whereas the CBG effect on the same mediators suggests alternative mechanisms, possibly involving peripheral pathways.

17.
Cancers (Basel) ; 11(12)2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31861153

RESUMO

Pancreatic cancer (PC) is one of the most lethal, chemoresistant malignancies and it is of paramount importance to find more effective therapeutic agents. Repurposing of non-anticancer drugs may expand the repertoire of effective molecules. Studies on repurposing of benzimidazole-based anthelmintics in PC and on their interaction with agents approved for PC therapy are lacking. We analyzed the effects of four Food and Drug Administration (FDA)-approved benzimidazoles on AsPC-1 and Capan-2 pancreatic cancer cell line viability. Notably, parbendazole was the most potent benzimidazole affecting PC cell viability, with half maximal inhibitory concentration (IC50) values in the nanomolar range. The drug markedly inhibited proliferation, clonogenicity and migration of PC cell lines through mechanisms involving alteration of microtubule organization and formation of irregular mitotic spindles. Moreover, parbendazole interfered with cell cycle progression promoting G2/M arrest, followed by the emergence of enlarged, polyploid cells. These abnormalities, suggesting a mitotic catastrophe, culminated in PC cell apoptosis, are also associated with DNA damage in PC cell lines. Remarkably, combinations of parbendazole with gemcitabine, a drug employed as first-line treatment in PC, synergistically decreased PC cell viability. In conclusion, this is the first study providing evidence that parbendazole as a single agent, or in combination with gemcitabine, is a repurposing candidate in the currently dismal PC therapy.

18.
Food Chem Toxicol ; 133: 110783, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31491430

RESUMO

Migraine is one of the most common neurological disorder, which has long been related to brain serotonin (5-HT) depletion and neuro-inflammation. Despite many treatment options are available, the frequent occurrence of unacceptable adverse effects further supports the research toward nutraceuticals and herbal preparations, among which Tanacetum parthenium and Salix alba showed promising anti-inflammatory and neuro-modulatory activities. The impact of extract treatment on astrocyte viability, spontaneous migration and apoptosis was evaluated. Anti-inflammatory/anti-oxidant effects were investigated on isolated rat cortexes exposed to a neurotoxic stimulus. The lactate dehydrogenase (LDH) release, nitrite levels and 5-HT turnover were evaluated, as well. A proteomic analysis was focused on specific neuronal proteins and a fingerprint analysis was carried out on selected phenolic compounds. Both extracts appeared able to exert in vitro anti-oxidant and anti-apoptotic effects. S. alba and T. parthenium extracts reduced LDH release, nitrite levels and 5-HT turnover induced by neurotoxic stimulus. The downregulation of selected proteins suggest a neurotoxicity, which could be ascribed to an elevated content of gallic acid in both S. alba and T. parthenium extracts. Concluding, both extracts exert neuroprotective effects, although the downregulation of key proteins involved in neuron physiology suggest caution in their use as food supplements.


Assuntos
Antioxidantes/farmacologia , Transtornos de Enxaqueca/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Salix/química , Tanacetum parthenium/química , Animais , Antioxidantes/toxicidade , Apoptose/efeitos dos fármacos , Artemia/efeitos dos fármacos , Linhagem Celular , Córtex Cerebral/efeitos dos fármacos , Depressão Alastrante da Atividade Elétrica Cortical/efeitos dos fármacos , Fármacos Neuroprotetores/toxicidade , Extratos Vegetais/toxicidade , Ratos Sprague-Dawley , Cicatrização/efeitos dos fármacos
19.
Nanomaterials (Basel) ; 9(7)2019 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-31252684

RESUMO

Dental pulp stem cells (DPSCs) represent a population of stem cells which could be useful in oral and maxillofacial reconstruction. They are part of the periendothelial niche, where their crosstalk with endothelial cells is crucial in the cellular response to biomaterials used for dental restorations. DPSCs and the endothelial cell line EA.hy926 were co-cultured in the presence of Chitlac-coated thermosets in culture conditions inducing, in turn, osteogenic or angiogenic differentiation. Cell proliferation was evaluated by 3-[4,5-dimethyl-thiazol-2-yl-]-2,5-diphenyl tetrazolium bromide (MTT) assay. DPSC differentiation was assessed by measuring Alkaline Phosphtase (ALP) activity and Alizarin Red S staining, while the formation of new vessels was monitored by optical microscopy. The IL-6 and PGE2 production was evaluated as well. When cultured together, the proliferation is increased, as is the DPSC osteogenic differentiation and EA.hy926 vessel formation. The presence of thermosets appears either not to disturb the system balance or even to improve the osteogenic and angiogenic differentiation. Chitlac-coated thermosets confirm their biocompatibility in the present co-culture model, being capable of improving the differentiation of both cell types. Furthermore, the assessed co-culture appears to be a useful tool to investigate cell response toward newly synthesized or commercially available biomaterials, as well as to evaluate their engraftment potential in restorative dentistry.

20.
Neurochem Int ; 126: 239-245, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30946848

RESUMO

AIMS: The worldwide increase in aging population is prevalently associated with the increase of neurodegenerative diseases. Peroxisome Proliferator-Activated Receptors (PPARs) are ligand-modulated transcriptional factors which belong to the nuclear hormone receptor superfamily which regulates peroxisome proliferation. The PPAR-γ is the most extensively studied among the three isoforms and the neuroprotective effects of PPAR-γ agonists have been recently demonstrated in a variety of preclinical models of neurological disorders. The aim of the study is to biologically evaluate the neuroprotective effects of new PPAR-γ selective agonists in an in vitro model. MAIN METHODS: CTX-TNA2 rat astrocytes were treated with G3335, a PPAR-γ antagonist, to simulate the conditions of a neurological disorder. Newly synthetized PPAR-γ selective agonists were added to the cell culture. Cytotoxicity was assessed by MTT assay, catalase activity was investigated by a colorimetric assay, Reactive Oxygen Species (ROS) production and apoptosis occurrence were measured by flow cytometry. Western blotting were performed to measure the levels of protein involved in the apoptotic pathway. KEY FINDINGS: Four PPAR-γ agonists were selected. Among them, the GL516, a fibrate derivative, showed low cytotoxicity and proved effective in restoring the catalase activity, reducing ROS production and decreasing the apoptosis occurrence triggered by the G3335 administration. The effects of this molecule appear to be comparable to the reference compound rosiglitazone, a potent and selective PPAR-γ agonist, mainly at prolonged exposure times (96 h). SIGNIFICANCE: Based on recent evidence, hypofunctionality of the PPAR-γ in glial cells could be present in neurodegenerative diseases and could participate in pathological mechanisms through peroxisomal damage. The fibrate derivative PPAR-γ agonist GL516 emerged as the most promising molecule of the series and could have a role in preventing the pathophysiology of neurodegenerative disorders.


Assuntos
Apoptose/fisiologia , Astrócitos/metabolismo , Ácidos Fíbricos/farmacologia , Estresse Oxidativo/fisiologia , PPAR gama/agonistas , PPAR gama/metabolismo , Animais , Apoptose/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Ácidos Fíbricos/química , Estresse Oxidativo/efeitos dos fármacos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...