Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 4845, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36964211

RESUMO

Brazilian mangroves have been severely impacted by metallurgical, petrochemical, pyrometallurgical smelters and other industrial activities. In Rio de Janeiro, mangroves are part of the Atlantic Rainforest now under the stress of high levels of industrial waste. Therefore, this work aimed to detect potentially toxic elements (PTEs) by evaluating the leaves of Laguncularia racemosa (L.) Gaertn. f. collected from three mangroves with different levels of pollution. To gain further insight toward an accurate diagnosis of the effects of anthropogenic pollution on mangrove stands, we evaluated leaf epicuticular wax composition, as well as morphological and anatomical traits. Samples were analyzed using inductively coupled plasma-optical emission spectroscopy (ICP-OES), gas chromatography (GC) and microscopy. Results revealed variation in the contents of PTEs among the three mangroves from lowest to highest concentration, as follows: Al (0.30-0.73), Pb (0.095-0.325) and Zn (0.25-0.30) mg/kg. Zn was detected in sclerenchyma tissues. Leaf epicuticular wax contained more than 50% of triterpenes, in particular, the pentacyclic triterpenes lupeol (41.61-55.63%) and ß-amyrin (8.81-16.35%). Such high concentrations promote the increase in leaf permeability to salts and PTEs. Micromorphology of leaf epicuticular wax in L. racemosa also varied among the three evaluated sites, especially around stomatal openings, but no harmful changes were noted. L. racemosa plays a key role in the rich diversity of mangrove ecosystems. As such, this species could, by the presence of PTEs in its leaves, be a suitable biomonitor of toxic substances in coastal environments of the world and used accordingly in strategies designed for eco-sustainable technologies.


Assuntos
Combretaceae , Ecossistema , Brasil , Folhas de Planta/química , Poluição Ambiental/análise , Monitoramento Ambiental/métodos
3.
Environ Sci Pollut Res Int ; 27(19): 23714-23729, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32301084

RESUMO

This study aimed to investigate the leaf epicuticular wax and the presence of heavy metals in leaves of Avicennia shaueriana, a halophyte found in Brazilian mangroves. We evaluated plants collected in mangroves located around Sepetiba Bay, Rio de Janeiro State. Heavy metals were analyzed by energy dispersive X-ray spectroscopy (EDS or EDX) and inductively coupled plasma optical emission spectrometry (ICP-OES). Chemical analysis of epicuticular wax was made by gas chromatography-mass spectrometry (GC-MS). We also evaluated the micromorphology of leaf surface using scanning electronic and light microscopy. The leaves from each mangrove presented alterations in wax layer. Fagarasterol (lupeol) in high quantity was the main triterpene identified in the leaf wax from plants collected in all mangroves: Coroa Grande (76.43%), Pedra de Guaratiba (38.91%), and Marambaia (62.56%). Al, Fe, Mn, and Zn were the main heavy metals detected in leaves from the three mangroves by ICP-OES. Thus, we show that that plants able to survive in the mangrove swamp can adapt to the exposure of heavy metals, accumulate them in their leaves, and be used in coastal area recovery projects as a phytoremediator.


Assuntos
Avicennia , Metais Pesados/análise , Baías , Brasil , Cromatografia Gasosa-Espectrometria de Massas , Folhas de Planta/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA