Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Trace Elem Res ; 200(3): 1455-1463, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33929693

RESUMO

Consumption of yerba mate occurs mostly in the form of hot infusion (chimarrão). Water solubility of elements found in commercialized yerba mate is needed to establish nutritional value and risks associated with potentially toxic elements. In this study, yerba mate products marketed in three Brazilian states (Paraná, Santa Catarina, and Rio Grande do Sul) for chimarrão were analyzed. Total (dry product) and hot water-soluble concentrations of Al, As, B, Ba, Ca, Cd, Co, Cs, Cu, Fe, K, Li, Mg, Mn, Mo, Ni, P, Pb, Rb, S, Se, Sr, Ti, V, and Zn were determined by inductively coupled plasma mass spectroscopy (ICP-MS). Total concentrations of the ten top elements followed the order of K>Ca>Mg>Mn>P>S>Al>Fe>Ba>Zn. The most soluble elements were B, Cs, Ni, Rb, and K, with values greater than 80%. The lowest water-soluble elements were V, Fe, and Ti (values <10%), followed by Ba, Cd, Al, As, Sr, Ca, and Pb with solubility between 10 and 20%. Although total Cd levels in yerba mate products were often above those permitted by South America legislation, estimated daily consumption intake indicated no risk associated with the chimarrão beverage. Manganese was the micronutrient with the highest total and soluble levels in yerba mate, which surpassed recommended daily intake values when considering a consumption amount of 50 g day-1 of yerba mate as chimarrão. The consumption of yerba mate is safe and contributes to intake of nutrients. The Cd and Pb reference values of yerba mate products sold in South America should be revised.


Assuntos
Ilex paraguariensis , Oligoelementos , Bebidas/análise , Brasil , Medição de Risco , Oligoelementos/análise
2.
Environ Monit Assess ; 193(7): 423, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34131843

RESUMO

Rainfall events induce water quality transformation in river systems influenced by the watershed land use and hydrology dynamics. In this context, an adaptive monitoring approach (AMA) is used to assess non-point sources (NPS) of pollution events, through dissolved organic matter (DOM) contribution. The case study is a monitoring site in a semi-urban watershed characterized by NPS contribution. An integrated quali-quantitative method for DOM based on dissolved organic carbon (DOC) content, spectroscopic techniques of excitation-emission fluorescence (EEF), and UV-visible absorbance is proposed. The results indicate a mix of allochthonous and autochthonous DOM characteristics from NPS sources associated to vegetation area influence (A285/DOC of 15.43 L (g cm)-1 and SUVA254 of 2.11 L (mg m)-1). The EEF signals showed more humic-like than protein-like characteristics with peaks A and C (approximately 5.72 r.u.) more intense than peaks B, T1, and T2 (approximately 4.33 r.u.), indicating NPS from the soil leachate. The absorbance ratio values indicate a mix of organic compounds with greater proportion of refractory characteristics with high aromaticity and molecular weight (approximately A300/A400 of 4.15 and A250/A365 of 4.48), associated with the surface wash-off of accumulated residual and subsurface soil erosion, which contribute to complex organic matter structures. The fluorescence indexes, overall, indicated allochthonous sources with intermediate humic characteristics (FI ≈ 1.43, BIX ≈ 0.65, and HIX ≈ 7.98). The proposed integrated optical property strategy represents an opportunity for better understanding of DOM dynamic assessment for identifying potential mitigation techniques for organic pollution control and improving water quality conditions.


Assuntos
Monitoramento Ambiental , Rios , Compostos Orgânicos , Solo , Espectrometria de Fluorescência , Qualidade da Água
3.
Environ Monit Assess ; 191(6): 402, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31134382

RESUMO

Diffuse pollution caused by rainfall events potentially affects water quality in rivers and, therefore, must be investigated in order to improve water quality planning and management recovery strategies. For these, a quali-quantitative approach was used to monitor the water quality parameters in a river located in a semi-urban watershed area based upon automatic sampling. Thirteen water quality parameters were measured during five rainfall events. Events ranged from 2.3 to 56.8 mm and water peak flows from 3.3 to 4.5 m3/s. The pollutographs measured showed a standard pattern for total suspended solids (TSS). However, for the other chemical parameters, as total phosphorous (TP) and dissolved organic carbon (DOC), the dilution effects were more evident. It was possible to observe the rainfall influence mainly for physical parameters indicating a mass transport pattern for diffuse pollutants, which increased, for example, the amount of TSS in the river. Furthermore, hydrological characteristics were relevant considering the pollutant behavior. Antecedent dry periods, ranging from 1.3 days to 21.4 days, and critical time, from 2.0 to 10.4 h, are determinants to evaluate non-traditional water quality impacts in the river. In general, each rainfall episode has its own characteristics, which produces distinct mass contribution and temporal behavior, being challenging in making generalization. Therefore, the results indicate that diffuse pollution has to be considered to establish future decision-making strategies to water resources management.


Assuntos
Chuva , Rios/química , Poluentes Químicos da Água/análise , Poluição da Água/análise , Qualidade da Água , Brasil , Monitoramento Ambiental/métodos , Fósforo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...