Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
mBio ; : e0098124, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39235249

RESUMO

Cellular responses to external stress allow microorganisms to adapt to a vast array of environmental conditions, including infection sites. The molecular mechanisms behind these responses are studied to gain insight into microbial pathogenesis, which could lead to new antimicrobial therapies. Here, we explore a role for arrestin protein-mediated ubiquitination in stress response and pathogenesis in the pathogenic fungus Cryptococcus neoformans. In a previous study, we identified four arrestin-like proteins in C. neoformans and found that one of these is required for efficient membrane synthesis, likely by directing interaction between fatty acid synthases and the Rsp5 E3 ubiquitin ligase. Here, we further explore Cn Rsp5 function and determine that this single Ub ligase is absolutely required for pathogenesis and survival in the presence of cellular stress. Additionally, we show that a second arrestin-like protein, Ali2, similarly facilitates interaction between Rsp5 and some of its protein targets. Of the four postulated C. neoformans arrestin-like proteins, Ali2 appears to contribute the most to C. neoformans pathogenesis, likely by directing Rsp5 to pathogenesis-related ubiquitination targets. A proteomics-based differential ubiquitination screen revealed that several known cell surface proteins are ubiquitinated by Rsp5 and a subset also requires Ali2 for their ubiquitination. Rsp5-mediated ubiquitination alters the stability and the localization of these proteins. A loss of Rsp5-mediated ubiquitination results in cell wall defects that increase susceptibility to external stresses. These findings support a model in which arrestin-like proteins guide Rsp5 to ubiquitinate specific target proteins, some of which are required for survival during stress. IMPORTANCE: Microbial proteins involved in human infectious diseases often need to be modified by specific chemical additions to be fully functional. Here, we explore the role of a particular protein modification, ubiquitination, in infections due to the human fungal pathogen Cryptococcus neoformans. We identified a complex of proteins responsible for adding ubiquitin groups to fungal proteins, and this complex is required for virulence. These proteins are fungal specific and might be targets for novel anti-infection therapy.

2.
mBio ; 13(5): e0225322, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36169198

RESUMO

Cryptococcus neoformans, an opportunistic yeast pathogen, relies on a complex network of stress response pathways that allow for proliferation in the host. In Saccharomyces cerevisiae, stress responses are regulated by integral membrane proteins containing a transient receptor potential (TRP) domain, including the flavin carrier protein 1 (Flc1), which regulates calcium homeostasis and flavin transport. Here, we report that deletion of C. neoformans FLC1 results in cytosolic calcium elevation and increased nuclear content of calcineurin-dependent transcription factor Crz1, which is associated with an aberrant cell wall chitin overaccumulation observed in the flc1Δ mutant. Absence of Flc1 or inhibition of calcineurin with cyclosporine A prevents vacuolar fusion under conditions of combined osmotic and temperature stress, which is reversed in the flc1Δ mutant by the inhibition of TORC1 kinase with rapamycin. Flc1-deficient yeasts exhibit compromised vacuolar fusion under starvation conditions, including conditions that stimulate formation of carbohydrate capsule. Consequently, the flc1Δ mutant fails to proliferate under low nutrient conditions and displays a defect in capsule formation. Consistent with the previously uncharacterized role of Flc1 in vacuolar biogenesis, we find that Flc1 localizes to the vacuole. The flc1Δ mutant presents a survival defect in J774A.1 macrophage cell-line and profound virulence attenuation in both the Galleria mellonella and mouse pulmonary infection models, demonstrating that Flc1 is essential for pathogenicity. Thus, cryptococcal Flc1 functions in calcium homeostasis and links calcineurin and TOR signaling with vacuolar biogenesis to promote survival under conditions associated with vacuolar fusion required for this pathogen's fitness and virulence. IMPORTANCE Cryptococcosis is a highly lethal infection with limited drug choices, most of which are highly toxic or complicated by emerging antifungal resistance. There is a great need for new drug targets that are unique to the fungus. Here, we identify such a potential target, the Flc1 protein, which we show is crucial for C. neoformans stress response and virulence. Importantly, homologues of Flc1 exist in other fungal pathogens, such as Candida albicans and Aspergillus fumigatus, and are poorly conserved in humans, which could translate into wider spectrum therapy associated with minimal toxicity. Thus, Flc1 could be an "Achille's heel" of C. neoformans to be leveraged therapeutically in cryptococcosis and possibly other fungal infections.


Assuntos
Criptococose , Cryptococcus neoformans , Humanos , Camundongos , Animais , Virulência , Cálcio/metabolismo , Calcineurina/genética , Calcineurina/metabolismo , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Ciclosporina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Criptococose/microbiologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Quitina/metabolismo , Fatores de Transcrição/metabolismo , Homeostase , Proteínas de Membrana/metabolismo , Flavinas/metabolismo , Proteínas de Transporte/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Sirolimo
3.
Front Microbiol ; 9: 2263, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30294320

RESUMO

Site-directed mutagenesis enables researchers to switch a gene of interest off for functional characterization of the gene. In the pathogenic yeasts, Cryptococcus neoformans and sister species C. deneoformans, this is almost exclusively achieved by introducing DNA into cells through either biolistic transformation or electroporation. The targeted gene is then disrupted by homologous recombination (HR) between the gene and the transforming DNA. Both techniques have downsides; biolistic transformation equipment is very expensive, limiting the use thereof to well-resourced laboratories, and HR occurs at extremely low frequencies in electroporated cryptococcal cells, making this method unappealing for gene targeting when not making use of additional modifications or methods to enhance HR in these cells. One approach to increase the frequency of HR in electroporated cryptococcal cells have recently been described. In this approach, CRISPR-Cas9 technology is utilized to form a double strand break in the targeted gene where after the occurrence of HR seems to be higher. The less expensive electroporation technique can therefore be used to deliver the CRISPR-Cas9 components into cells to disrupt a gene of interest, but only if the CRISPR components can be maintained for long enough in cells to enable their expression. Maintenance of episomal DNA occurs readily in C. deneoformans, but only under certain conditions in C. neoformans. In addition, CRISPR-Cas9 allows for gene complementation in order to fulfill Falkow's molecular Koch's postulates and adds other novel methods for studying genes as well, such as the addition of a fluorophore to an inactive Cas9 enzyme to highlight the location of a gene in a chromosome. These developments add less expensive alternatives to current methods, which could lead to more research on this yeast in developing countries where cryptococcal infections are more prevalent and researchers have access to more clinical isolates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA