Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J R Soc Interface ; 19(196): 20220576, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36349444

RESUMO

A challenge in current stem cell therapies for Parkinson's disease (PD) is controlling neuronal outgrowth from the substantia nigra towards the targeted area where connectivity is required in the striatum. Here we present progress towards controlling directional neurite extensions through the application of iron-oxide magnetic nanoparticles (MNPs) labelled neuronal cells combined with a magnetic array generating large spatially variant field gradients (greater than 20 T m-1). We investigated the viability of this approach in both two-dimensional and organotypic brain slice models and validated the observed changes in neurite directionality using mathematical models. Results showed that MNP-labelled cells exhibited a shift in directional neurite outgrowth when cultured in a magnetic field gradient, which broadly agreed with mathematical modelling of the magnetic force gradients and predicted MNP force direction. We translated our approach to an ex vivo rat brain slice where we observed directional neurite outgrowth of transplanted MNP-labelled cells from the substantia nigra towards the striatum. The improved directionality highlights the viability of this approach as a remote-control methodology for the control and manipulation of cellular growth for regenerative medicine applications. This study presents a new tool to overcome challenges faced in the development of new therapies for PD.


Assuntos
Nanopartículas de Magnetita , Doença de Parkinson , Animais , Ratos , Doença de Parkinson/terapia , Crescimento Neuronal , Neuritos/fisiologia , Campos Magnéticos
2.
Eur Cell Mater ; 41: 616-632, 2021 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-34091884

RESUMO

In vitro models aim to recapitulate the in vivo situation. To more closely mimic the knee joint environment, current in vitro models need improvements to reflect the complexity of the native tissue. High molecular weight hyaluronan (hMwt HA) is one of the most abundant bioactive macromolecules in healthy synovial fluid, while shear and dynamic compression are two joint-relevant mechanical forces. The present study aimed at investigating the concomitant effect of joint-simulating mechanical loading (JSML) and hMwt HA-supplemented culture medium on the chondrogenic differentiation of primary human bone-marrow-derived mesenchymal stem cells (hBM-MSCs). hBM-MSC chondrogenesis was investigated over 28 d at the gene expression level and total DNA, sulphated glycosaminoglycan, TGF-ß1 production and safranin O staining were evaluated. The concomitant effect of hMwt HA culture medium and JSML significantly increased cartilage-like matrix deposition and sulphated glycosaminoglycan synthesis, especially during early chondrogenesis. A stabilisation of the hBM-MSC-derived chondrocyte phenotype was observed through the reduced upregulation of the hypertrophic marker collagen X and an increase in the chondrogenic collagen type II/X ratio. A combination of JSML and hMwt HA medium better reflects the complexity of the in vivo synovial joint environment. Thus, JSML and hMwt HA medium will be two important features for joint-related culture models to more accurately predict the in vivo outcome, therefore reducing the need for animal studies. Reducing in vitro artefacts would enable a more reliable prescreening of potential cartilage repair therapies.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Ácido Hialurônico/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Idoso , Cartilagem/efeitos dos fármacos , Cartilagem/metabolismo , Células Cultivadas , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Colágeno Tipo II/metabolismo , Colágeno Tipo X/metabolismo , DNA/metabolismo , Feminino , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade , Líquido Sinovial/efeitos dos fármacos , Líquido Sinovial/metabolismo , Engenharia Tecidual/métodos , Alicerces Teciduais/química
3.
NPJ Regen Med ; 6(1): 24, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846347

RESUMO

Successful progression from bench to bedside for regenerative medicine products is challenging and requires a multidisciplinary approach. What has not yet been fully recognised is the potential for quantitative data analysis and mathematical modelling approaches to support this process. In this review, we highlight the wealth of opportunities for embedding mathematical and computational approaches within all stages of the regenerative medicine pipeline. We explore how exploiting quantitative mathematical and computational approaches, alongside state-of-the-art regenerative medicine research, can lead to therapies that potentially can be more rapidly translated into the clinic.

4.
J R Soc Interface ; 18(175): 20200558, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33593212

RESUMO

A key challenge for stem cell therapies is the delivery of therapeutic cells to the repair site. Magnetic targeting has been proposed as a platform for defining clinical sites of delivery more effectively. In this paper, we use a combined in vitro experimental and mathematical modelling approach to explore the magnetic targeting of mesenchymal stromal cells (MSCs) labelled with magnetic nanoparticles using an external magnet. This study aims to (i) demonstrate the potential of magnetic tagging for MSC delivery, (ii) examine the effect of red blood cells (RBCs) on MSC capture efficacy and (iii) highlight how mathematical models can provide both insight into mechanics of therapy and predictions about cell targeting in vivo. In vitro MSCs are cultured with magnetic nanoparticles and circulated with RBCs over an external magnet. Cell capture efficacy is measured for varying magnetic field strengths and RBC percentages. We use a 2D continuum mathematical model to represent the flow of magnetically tagged MSCs with RBCs. Numerical simulations demonstrate qualitative agreement with experimental results showing better capture with stronger magnetic fields and lower levels of RBCs. We additionally exploit the mathematical model to make hypotheses about the role of extravasation and identify future in vitro experiments to quantify this effect.


Assuntos
Nanopartículas de Magnetita , Células-Tronco Mesenquimais , Campos Magnéticos , Modelos Teóricos , Transplante de Células-Tronco
5.
Nanomedicine ; 14(4): 1149-1159, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29471171

RESUMO

Stem cell therapies hold potential to stimulate tendon regeneration and homeostasis, which is maintained in response to the native mechanical environment. Activins are members of the mechano-responsive TGF-ß superfamily that participates in the regulation of several downstream biological processes. Mechanosensitive membrane receptors such as activin can be activated in different types of stem cells via magnetic nanoparticles (MNPs) through remote magnetic actuation resulting in cell differentiation. In this work, we target the Activin receptor type IIA (ActRIIA) in human adipose stem cells (hASCs), using anti-ActRIIA functionalized MNPs, externally activated through a oscillating magnetic bioreactor. Upon activation, the phosphorylation of Smad2/3 is induced allowing translocation of the complex to the nucleus, regulating tenogenic transcriptional responses. Our study demonstrates the potential remote activation of MNPs tagged hASCs to trigger the Activin receptor leading to tenogenic differentiation. These results may provide insights toward tendon regeneration therapies.


Assuntos
Receptores de Activinas Tipo II/metabolismo , Tecido Adiposo/citologia , Células-Tronco/metabolismo , Diferenciação Celular , Células Cultivadas , Humanos , Transdução de Sinais , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Engenharia Tecidual/métodos , Fator de Crescimento Transformador beta/metabolismo
6.
Methods ; 136: 126-133, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29080739

RESUMO

Cell mechanical behaviour is increasingly recognised as a central biophysical parameter in cancer and stem cell research, and methods of investigating their mechanical behaviour are therefore needed. We have developed a novel qualitative method based on quantitative phase imaging which is capable of investigating cell mechanical behaviour in real-time at cellular resolution using optical coherence phase microscopy (OCPM), and stimulating the cells non-invasively using hydrostatic pressure. The method was exemplified to distinguish between cells with distinct mechanical properties, and transient change induced by Cytochalasin D. We showed the potential of quantitative phase imaging to detect nanoscale intracellular displacement induced by varying hydrostatic pressure in microfluidic channels, reflecting cell mechanical behaviour. Further physical modelling is required to yield quantitative mechanical properties.


Assuntos
Pressão Hidrostática , Microfluídica/métodos , Microscopia/métodos , Tomografia de Coerência Óptica/métodos , Humanos , Fenômenos Mecânicos , Células-Tronco/fisiologia
7.
J Theor Biol ; 394: 149-159, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26796221

RESUMO

The hydrostatic pressure stimulation of an appropriately cell-seeded porous scaffold within a bioreactor is a promising method for engineering bone tissue external to the body. We propose a mathematical model, and employ a suite of candidate constitutive laws, to qualitatively describe the effect of applied hydrostatic pressure on the quantity of minerals deposited in such an experimental setup. By comparing data from numerical simulations with experimental observations under a number of stimulation protocols, we suggest that the response of bone cells to an applied pressure requires consideration of two components; (i) a component describing the cell memory of the applied stimulation, and (ii) a recovery component, capturing the time cells require to recover from high rates of mineralisation.


Assuntos
Desenvolvimento Ósseo , Pressão Hidrostática , Modelos Biológicos , Engenharia Tecidual/métodos , Calcificação Fisiológica , Simulação por Computador , Minerais/metabolismo
8.
Math Med Biol ; 32(3): 345-66, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25323738

RESUMO

In this paper, we consider the derivation of macroscopic equations appropriate to describe the growth of biological tissue, employing a multiple-scale homogenization method to accommodate explicitly the influence of the underlying microscale structure of the material, and its evolution, on the macroscale dynamics. Such methods have been widely used to study porous and poroelastic materials; however, a distinguishing feature of biological tissue is its ability to remodel continuously in response to local environmental cues. Here, we present the derivation of a model broadly applicable to tissue engineering applications, characterized by cell proliferation and extracellular matrix deposition in porous scaffolds used within tissue culture systems, which we use to study coupling between fluid flow, nutrient transport, and microscale tissue growth. Attention is restricted to surface accretion within a rigid porous medium saturated with a Newtonian fluid; coupling between the various dynamics is achieved by specifying the rate of microscale growth to be dependent upon the uptake of a generic diffusible nutrient. The resulting macroscale model comprises a Darcy-type equation governing fluid flow, with flow characteristics dictated by the assumed periodic microstructure and surface growth rate of the porous medium, coupled to an advection-reaction equation specifying the nutrient concentration. Illustrative numerical simulations are presented to indicate the influence of microscale growth on macroscale dynamics, and to highlight the importance of including experimentally relevant microstructural information to correctly determine flow dynamics and nutrient delivery in tissue engineering applications.


Assuntos
Transporte Biológico , Hidrodinâmica , Modelos Biológicos , Porosidade , Engenharia Tecidual , Alicerces Teciduais
9.
Acta Biomater ; 10(10): 4197-205, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24907660

RESUMO

There is an unmet need for improved, effective tissue engineering strategies to replace or repair bone damaged through disease or injury. Recent research has focused on developing biomaterial scaffolds capable of spatially and temporally releasing combinations of bioactive growth factors, rather than individual molecules, to recapitulate repair pathways present in vivo. We have developed an ex vivo embryonic chick femur critical size defect model and applied the model in the study of novel extracellular matrix (ECM) hydrogel scaffolds containing spatio-temporal combinatorial growth factor-releasing microparticles and skeletal stem cells for bone regeneration. Alginate/bovine bone ECM (bECM) hydrogels combined with poly(d,l-lactic-co-glycolic acid) (PDLLGA)/triblock copolymer (10-30% PDLLGA-PEG-PLDLGA) microparticles releasing dual combinations of vascular endothelial growth factor (VEGF), chondrogenic transforming growth factor beta 3 (TGF-ß3) and the bone morphogenetic protein BMP2, with human adult Stro-1+bone marrow stromal cells (HBMSCs), were placed into 2mm central segmental defects in embryonic day 11 chick femurs and organotypically cultured. Hydrogels loaded with VEGF combinations induced host cell migration and type I collagen deposition. Combinations of TGF-ß3/BMP2, particularly with Stro-1+HBMSCs, induced significant formation of structured bone matrix, evidenced by increased Sirius red-stained matrix together with collagen expression demonstrating birefringent alignment within hydrogels. This study demonstrates the successful use of the chick femur organotypic culture system as a high-throughput test model for scaffold/cell/growth factor therapies in regenerative medicine. Temporal release of dual growth factors, combined with enriched Stro-1+HBMSCs, improved the formation of a highly structured bone matrix compared to single release modalities. These studies highlight the potential of a unique alginate/bECM hydrogel dual growth factor release platform for bone repair.


Assuntos
Células da Medula Óssea/metabolismo , Regeneração Óssea/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Fêmur , Hidrogéis , Células Satélites de Músculo Esquelético/metabolismo , Adulto , Alginatos/química , Alginatos/farmacologia , Animais , Células da Medula Óssea/citologia , Bovinos , Embrião de Galinha , Galinhas , Matriz Extracelular/química , Fêmur/lesões , Fêmur/metabolismo , Fêmur/patologia , Ácido Glucurônico/química , Ácido Glucurônico/farmacologia , Ácidos Hexurônicos/química , Ácidos Hexurônicos/farmacologia , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Ácido Láctico/química , Ácido Láctico/farmacologia , Modelos Biológicos , Ácido Poliglicólico/química , Ácido Poliglicólico/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Células Satélites de Músculo Esquelético/patologia , Células Estromais/citologia , Células Estromais/metabolismo
10.
Acta Biomater ; 10(10): 4186-96, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24937137

RESUMO

Current clinical treatments for skeletal conditions resulting in large-scale bone loss include autograft or allograft, both of which have limited effectiveness. In seeking to address bone regeneration, several tissue engineering strategies have come to the fore, including the development of growth factor releasing technologies and appropriate animal models to evaluate repair. Ex vivo models represent a promising alternative to simple in vitro systems or complex, ethically challenging in vivo models. We have developed an ex vivo culture system of whole embryonic chick femora, adapted in this study as a critical size defect model to investigate the effects of novel bone extracellular matrix (bECM) hydrogel scaffolds containing spatio-temporal growth factor-releasing microparticles and skeletal stem cells on bone regeneration, to develop a viable alternative treatment for skeletal degeneration. Alginate/bECM hydrogels combined with poly (d,l-lactic-co-glycolic acid) (PDLLGA)/triblock copolymer (10-30% PDLLGA-PEG-PDLLGA) microparticles releasing VEGF, TGF-ß3 or BMP-2 were placed, with human adult Stro-1+ bone marrow stromal cells, into 2mm central segmental defects in embryonic chick femurs. Alginate/bECM hydrogels loaded with HSA/VEGF or HSA/TGF-ß3 demonstrated a cartilage-like phenotype, with minimal collagen I deposition, comparable to HSA-only control hydrogels. The addition of BMP-2 releasing microparticles resulted in enhanced structured bone matrix formation, evidenced by increased Sirius red-stained matrix and collagen expression within hydrogels. This study demonstrates delivery of bioactive growth factors from a novel alginate/bECM hydrogel to augment skeletal tissue formation and the use of an organotypic chick femur defect culture system as a high-throughput test model for scaffold/cell/growth factor therapies for regenerative medicine.


Assuntos
Células da Medula Óssea/metabolismo , Regeneração Óssea , Fêmur , Hidrogéis , Peptídeos e Proteínas de Sinalização Intercelular , Células Satélites de Músculo Esquelético/metabolismo , Adulto , Alginatos/química , Alginatos/farmacologia , Animais , Células da Medula Óssea/patologia , Bovinos , Galinhas , Matriz Extracelular/química , Fêmur/lesões , Fêmur/metabolismo , Fêmur/patologia , Ácido Glucurônico/química , Ácido Glucurônico/farmacologia , Ácidos Hexurônicos/química , Ácidos Hexurônicos/farmacologia , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Células Satélites de Músculo Esquelético/patologia , Células Estromais/metabolismo , Células Estromais/patologia
11.
Bone ; 53(2): 468-77, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23333177

RESUMO

Mechanical loading of bone and cartilage in vivo results in the generation of cyclic hydrostatic forces as bone compression is transduced to fluid pressure in the canalicular network and the joint synovium. It has therefore been suggested that hydrostatic pressure is an important stimulus by which osteochondral cells and their progenitors sense and respond to mechanical loading in vivo. In this study, hydrostatic pressure regimes of 0-279kPa at 0.005-2Hz were applied to organotypically cultured ex vivo chick foetal femurs (e11) for 1hour per day in a custom designed bioreactor for 14days and bone formation assessed by X-ray microtomography and qualified by histology. We found that the mineralised portion of the developing femur cultured under any cyclic hydrostatic pressure regime was significantly larger and/or denser than unstimulated controls but that constant (non-cycling) hydrostatic pressure had no effect on bone growth. Further experiments showed that the increase in bone formation was directly proportional to stimulation frequency (R(2)=0.917), but independent of the magnitude of the pressure applied, whilst even very low frequencies of stimulation (0.005Hz) had significant effects on bone growth. Expression of Type-II collagen in both epiphyses and diaphysis was significantly upregulated (1.48-fold and 1.95-fold respectively), together with osteogenic genes (osteonectin and osteopontin) and the osteocyte maturation marker CD44. This work demonstrates that cyclic hydrostatic pressure promotes bone growth and mineralisation in a developmental model and supports the hypothesis that hydrostatic forces play an important role in regulating bone growth and remodelling in vivo.


Assuntos
Desenvolvimento Ósseo/fisiologia , Fêmur/fisiologia , Pressão Hidrostática , Animais , Embrião de Galinha , Colágeno Tipo II/metabolismo , Fêmur/metabolismo , Osteogênese/fisiologia , Microtomografia por Raio-X
12.
J Math Biol ; 67(5): 1199-225, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22986893

RESUMO

In vitro tissue engineering is emerging as a potential tool to meet the high demand for replacement tissue, caused by the increased incidence of tissue degeneration and damage. A key challenge in this field is ensuring that the mechanical properties of the engineered tissue are appropriate for the in vivo environment. Achieving this goal will require detailed understanding of the interplay between cell proliferation, extracellular matrix (ECM) deposition and scaffold degradation. In this paper, we use a mathematical model (based upon a multiphase continuum framework) to investigate the interplay between tissue growth and scaffold degradation during tissue construct evolution in vitro. Our model accommodates a cell population and culture medium, modelled as viscous fluids, together with a porous scaffold and ECM deposited by the cells, represented as rigid porous materials. We focus on tissue growth within a perfusion bioreactor system, and investigate how the predicted tissue composition is altered under the influence of (1) differential interactions between cells and the supporting scaffold and their associated ECM, (2) scaffold degradation, and (3) mechanotransduction-regulated cell proliferation and ECM deposition. Numerical simulation of the model equations reveals that scaffold heterogeneity typical of that obtained from [Formula: see text]CT scans of tissue engineering scaffolds can lead to significant variation in the flow-induced mechanical stimuli experienced by cells seeded in the scaffold. This leads to strong heterogeneity in the deposition of ECM. Furthermore, preferential adherence of cells to the ECM in favour of the artificial scaffold appears to have no significant influence on the eventual construct composition; adherence of cells to these supporting structures does, however, lead to cell and ECM distributions which mimic and exaggerate the heterogeneity of the underlying scaffold. Such phenomena have important ramifications for the mechanical integrity of engineered tissue constructs and their suitability for implantation in vivo.


Assuntos
Proliferação de Células , Matriz Extracelular/fisiologia , Mecanotransdução Celular/fisiologia , Modelos Biológicos , Engenharia Tecidual/métodos , Reatores Biológicos , Simulação por Computador , Humanos
13.
J Tissue Eng Regen Med ; 5(10): 770-9, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22002920

RESUMO

A feasibility study was undertaken to examine the potential of biodegradable HEMA-lactate-dextran (HEMA-LLA-D)-based cryogels as scaffolds for cartilage tissue engineering. This was a preliminary in vitro study giving essential information on the biocompatibility of cryogels with cartilage cells. HEMA-lactate (HEMA-LLA) and HEMA-LLA-D were synthesized and characterized by different techniques. Cryogel scaffolds with supermacroporous structures were produced by cryogenic treatment of these macromers. Chondrocytes obtained from bovine articular cartilage were seeded onto cylindrical cryogels and cultured. The samples were examined by several microcopical techniques for cell viability and morphological analyses were performed at two culture points. Histological study of the constructs revealed the cells' growth on the surface and within the scaffolds. Confocal microscopical images demonstrated that the majority of live vs. dead cells had been attached to and integrated with the pores of the scaffold. SEM analysis showed round to oval-shaped chondrocytic cells interconnected with each other by communicating junctions. The chondrocytes rapidly proliferated in the cryogels, manifesting that they fully covered the scaffold surface after 9 days and almost filled the spaces in the pores of the scaffold after 15 days of culture. Chondrocytes secreted significant amount of extracellular matrix in the scaffolds and exhibited highly interconnective morphology. Light and transmission electron microscopy revealed groups of active cartilage cells closely apposed to the cryogel. We concluded that cryogel scaffolds could be excellent candidates for cartilage tissue regeneration with their extraordinary properties, including soft, elastic nature, highly open interconnected pore structure and very rapid, controllable swellability.


Assuntos
Cartilagem Articular/citologia , Condrócitos/citologia , Criogéis/química , Cultura Primária de Células/métodos , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Bovinos , Células Cultivadas , Dextranos/química , Ácido Láctico/química , Metacrilatos/química , Porosidade
14.
Artigo em Inglês | MEDLINE | ID: mdl-20570748

RESUMO

Recent molecular work has revealed a large diversity of myosin heavy chain (MyHC) gene variants in the abdominal musculature of gammarid amphipods. An unusual truncated MyHC transcript from the loop 1 region (Variant A(3)) was consistently observed in multiple species and populations. The current study aimed to determine whether this MyHC variant is specific to a particular muscle fibre type, as a change in net charge to the loop 1 region of Variant A(3) could be functionally significant. The localisation of different fibre types within the abdominal musculature of several gammarid species revealed that the deep flexor and extensor muscles are fast-twitch muscle fibres. The dorsal superficial muscles were identified as slow fibres and the muscles extrinsic to the pleopods were identified as intermediate fibres. Amplification of loop 1 region mRNA from isolated superficial extensor and deep flexor muscles, and subsequent liquid chromatography and sequence analysis revealed that Variant A(3) was the primary MyHC variant in slow muscles, and the conserved A(1) sequence was the primary variant in fast muscles. The specific role of Variant A(3) in the slow muscles remains to be investigated.


Assuntos
Anfípodes/metabolismo , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Cadeias Pesadas de Miosina/genética , Sequência de Aminoácidos , Anfípodes/citologia , Animais , DNA Complementar/genética , Eletroforese em Gel de Poliacrilamida , Dados de Sequência Molecular , Fibras Musculares de Contração Rápida/citologia , Fibras Musculares de Contração Lenta/citologia , Miofibrilas/metabolismo , Cadeias Pesadas de Miosina/química , Cadeias Pesadas de Miosina/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
15.
Proc Inst Mech Eng H ; 224(12): 1523-32, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21287835

RESUMO

Engineering bone tissue for use in orthopaedics poses multiple challenges. Providing the appropriate growth environment that will allow complex tissues such as bone to grow is one of these challenges. There are multiple design factors that must be considered in order to generate a functional tissue in vitro for replacement surgery in the clinic. Complex bioreactors have been designed that allow different stress regimes such as compressive, shear, and rotational forces to be applied to three-dimensional (3D) engineered constructs. This review addresses these considerations and outlines the types of bioreactor that have been developed and are currently in use.


Assuntos
Reatores Biológicos , Desenvolvimento Ósseo/fisiologia , Técnicas de Cultura de Células/instrumentação , Osteoblastos/citologia , Osteoblastos/fisiologia , Osteogênese/fisiologia , Engenharia Tecidual/instrumentação , Animais , Células Cultivadas , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos
16.
J Tissue Eng Regen Med ; 3(6): 470-6, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19530258

RESUMO

A new scaffold fabrication technique aiming to enhance pore interconnectivity for tissue engineering has been developed. Medical grade poly(lactic acid) was utilized to generate scaffolds by a solvent-evaporating/particulate-leaching technique, using a new dual-porogen system. Water-soluble sodium chloride particles were used to control macro-pore size in the range 106-255 microm, while organic naphthalene was utilized as a porogen to increase pore interconnections. The three-dimensional (3D) morphology of the scaffolds manufactured with and without naphthalene was examined by optical coherence tomography and scanning electron microscopy. The mechanical properties of the scaffolds were characterized by compression tests. MG63 osteoblast cells were seeded in the scaffolds to study the cell attachment and viability evaluated by confocal microscopy. It was revealed that introducing naphthalene as the second porogen in the solvent-evaporating/particulate-leaching process resulted in improvement of the pore interconnectivity. Cells grew in both scaffolds fabricated with and without naphthalene. They exhibited strong green fluorescence when using a live/dead fluorescent dye kit, indicating that the naphthalene in the scaffold process did not affect cell viability.


Assuntos
Ácido Láctico/química , Polímeros/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Dióxido de Carbono/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Força Compressiva/efeitos dos fármacos , Humanos , Microscopia Confocal , Microscopia Eletrônica de Varredura , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Poliésteres , Porosidade/efeitos dos fármacos , Tomografia Computadorizada por Raios X
17.
Adv Biochem Eng Biotechnol ; 112: 81-93, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19290498

RESUMO

The challenges for the tissue engineering of connective tissue lie in creating off-the-shelf tissue constructs which are capable of providing organs for transplantation. These strategies aim to grow a complex tissue with the appropriate mechanical integrity necessary for functional load bearing. Monolayer culture systems lack correlation with the in vivo environment and the naturally occur ring cell phenotypes. Part of the development of more recent models is to create growth environments or bioreactors which enable three-dimensional culture. Evidence suggests that in order to grow functional load-bearing tissues in a bioreactor, the cells must experience mechanical loading stimuli similar to that experienced in vivo which sets out the requirements for mechanical loading bioreactors. An essential part of developing new bioreactors for tissue growth is identifying ways of routinely and continuously measuring neo-tissue formation and in order to fully identify the successful generation of a tissue implant, the appropriate on-line monitoring must be developed. New technologies are being developed to advance our efforts to grow tissue ex vivo. The bioreactor is a critical part of these developments in supporting growth of biological implants and combining this with new advances in the detection of tissue formation allows us to refine our protocols and move nearer to off-the-shelf implants for clinical applications.


Assuntos
Reatores Biológicos , Células Endoteliais/fisiologia , Osteócitos/fisiologia , Tendões/fisiologia , Engenharia Tecidual/instrumentação , Fenômenos Biomecânicos , Células Endoteliais/citologia , Desenho de Equipamento , Humanos , Campos Magnéticos , Imãs , Mecanotransdução Celular , Osteócitos/citologia , Tendões/citologia , Técnicas de Cultura de Tecidos/instrumentação , Técnicas de Cultura de Tecidos/normas , Engenharia Tecidual/métodos , Alicerces Teciduais , Suporte de Carga
18.
Gene ; 437(1-2): 60-70, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19236910

RESUMO

To investigate the molecular basis of temperature adaptation in natural populations we used the candidate gene approach, targeting the myosin heavy chain (MyHC) gene. The functional effects of genetic variation in MyHC have been well characterised, and changes in the flexibility of the surface loops 1 and 2, caused by modulations in length, amino acid composition and charge can play an important role in thermal acclimation in fish. However, the extent that MyHC diversity is influenced by natural thermal gradients is largely unknown. Sequence variation in MyHC cDNA was examined in 7 species of gammarid amphipod with broad latitudinal distributions and differing intertidal thermal habitats in the NE Atlantic and Arctic Oceans. A high degree of diversity was detected in the loop 1 nucleotide sequences, although not all are likely to be functional transcripts, and their deduced amino acid sequences indicated no differences in the length and charge of loop 1 and associated binding kinetics. Four isoforms for loop 2 were detected which differed in sequence length and charge distribution, suggesting functional differences in sliding velocities and ATPase activities. While all species, and indeed most individuals, expressed multiple loop 2 isoforms, analysis of the two species with the greatest number of sequenced clones revealed that G. duebeni, a high-shore species with the highest thermal tolerance, expressed a greater diversity of forms than G. oceanicus, a low intertidal species more sensitive to temperature change. Latitude further influenced MyHC loop 2 diversity in G. duebeni, as the number of isoforms increased in the northern populations. Species-specific variations in MyHC diversity were observed, irrespective of phylogenetic associations revealed by analysis of the mitochondrial cytochrome oxidase 1 (CO1) gene. Overall, it appears that the temporal temperature variations associated with higher intertidal habitat may be a greater selective agent for MyHC isoform diversity in gammarid muscles than broad spatial changes with latitude.


Assuntos
Crustáceos/genética , Cadeias Pesadas de Miosina/genética , Animais , Sequência de Bases , Crustáceos/metabolismo , Variação Genética , Geografia , Dados de Sequência Molecular , Cadeias Pesadas de Miosina/química , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Temperatura
19.
J R Soc Interface ; 5(25): 899-907, 2008 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-18077245

RESUMO

A number of bone tissue engineering strategies use porous three-dimensional scaffolds in combination with bioreactor regimes. The ability to understand cell behaviour relative to strain profile will allow for the effects of mechanical conditioning in bone tissue engineering to be realized and optimized. We have designed a model system to investigate the effects of strain profile on bone cell behaviour. This simplified model has been designed with a view to providing insight into the types of strain distribution occurring across a single pore of a scaffold subjected to perfusion-compression conditioning. Local strains were calculated at the surface of the pore model using finite-element analysis. Scanning electron microscopy was used in secondary electron mode to identify cell morphology within the pore relative to local strains, while backscattered electron detection in combination with X-ray microanalysis was used to identify calcium deposition. Morphology was altered according to the level of strain experienced by bone cells, where cells subjected to compressive strains (up to 0.61%) appeared extremely rounded while those experiencing zero and tensile strain (up to 0.81%) were well spread. Osteoid mineralization was similarly shown to be dose dependent with respect to substrate strain within the pore model, with the highest level of calcium deposition identified in the intermediate zones of tension/compression.


Assuntos
Reatores Biológicos , Osso e Ossos/fisiologia , Calcificação Fisiológica/fisiologia , Modelos Anatômicos , Osteócitos/ultraestrutura , Engenharia Tecidual/métodos , Animais , Fenômenos Biomecânicos , Osso e Ossos/ultraestrutura , Cálcio/metabolismo , Células Cultivadas , Análise de Elementos Finitos , Microscopia Eletrônica de Varredura , Ratos
20.
Nanotechnology ; 19(25): 255606, 2008 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-21828658

RESUMO

Magnetic iron metal-silica and magnetite-silica nanocomposites have been prepared via temperature-programed reduction (TPR) of an iron oxide-SBA-15 (SBA: Santa Barbara Amorphous) composite. TPR of the starting SBA-15 supported Fe(2)O(3) generated Fe(3)O(4) and FeO as stepwise intermediates in the ultimate formation of Fe-SBA-15. The composite materials have been characterized by means of x-ray diffraction, high resolution transmission electron microscopy and SQUID (superconducting quantum interference device) magnetometry. The Fe oxide and metal components form a core, as nanoscale particles, that is entrapped in the SBA-15 pore network. Fe(3)O(4)-SBA-15 and Fe-SBA-15 exhibited superparamagnetic properties with a total magnetization value of 17 emu g(-1). The magnetite-silica composite (at an Fe(3)O(4) loading of 30% w/w) delivered a magnetization that exceeded values reported in the literature or obtained with commercial samples. Due to the high pore volume of the mesoporous template, the magnetite content can be increased to 83% w/w with a further enhancement of magnetization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...