Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 10(4): 734-40, 2014 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-24115738

RESUMO

Semiconductor quantum dot nanocrystals (QDs) for optical biosensing applications often contain thick polyethylene glycol (PEG)-based coatings in order to retain the advantageous QD properties in biological media such as blood, serum or plasma. On the other hand, the application of QDs in Förster resonance energy transfer (FRET) immunoassays, one of the most sensitive and most common fluorescence-based techniques for non-competitive homogeneous biomarker diagnostics, is limited by such thick coatings due to the increased donor-acceptor distance. In particular, the combination with large IgG antibodies usually leads to distances well beyond the common FRET range of approximately 1 to 10 nm. Herein, time-gated detection of Tb-to-QD FRET for background suppression and an increased FRET range is combined with single domain antibodies (or nanobodies) for a reduced distance in order to realize highly sensitive QD-based FRET immunoassays. The "(nano)(2) " immunoassay (combination of nanocrystals and nanobodies) is performed on a commercial clinical fluorescence plate reader and provides sub-nanomolar (few ng/mL) detection limits of soluble epidermal growth factor receptor (EGFR) in 50 µL buffer or serum samples. Apart from the first demonstration of using nanobodies for FRET-based immunoassays, the extremely low and clinically relevant detection limits of EGFR demonstrate the direct applicability of the (nano)(2-) assay to fast and sensitive biomarker detection in clinical diagnostics.


Assuntos
Receptores ErbB/sangue , Transferência Ressonante de Energia de Fluorescência/métodos , Imunoensaio/métodos , Nanopartículas/química , Pontos Quânticos/química , Anticorpos de Domínio Único/química , Calibragem , Humanos , Análise Espectral
2.
Int J Cancer ; 129(8): 2013-24, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21520037

RESUMO

The epidermal growth factor receptor (EGFR) has been shown to be a valid cancer target for antibody-based therapy. At present, several anti-EGFR monoclonal antibodies have been successfully used, such as cetuximab and matuzumab. X-ray crystallography data show that these antibodies bind to different epitopes on the ecto-domain of EGFR, providing a rationale for the combined use of these two antibody specificities. We have previously reported on the successful isolation of antagonistic anti-EGFR nanobodies. In our study, we aimed to improve the efficacy of these molecules by combining nanobodies with specificities similar to both cetuximab and matuzumab into a single biparatopic molecule. Carefully designed phage nanobody selections resulted in two sets of nanobodies that specifically blocked the binding of either matuzumab or cetuximab to EGFR and that did not compete for each others' binding. A combination of nanobodies from both epitope groups into the biparatopic nanobody CONAN-1 was shown to block EGFR activation more efficiently than monovalent or bivalent (monospecific) nanobodies. In addition, this biparatopic nanobody potently inhibited EGF-dependent cell proliferation. Importantly, in an in vivo model of athymic mice bearing A431 xenografts, CONAN-1 inhibited tumour outgrowth with an almost similar potency as the whole mAb cetuximab, despite the fact that CONAN-1 is devoid of an Fc portion that could mediate immune effector functions. Compared to therapy using bivalent, monospecific nanobodies, CONAN-1 was clearly more potent in tumour growth inhibition. These results show that the rational design of biparatopic nanobody-based anticancer therapeutics may yield potent lead molecules for further development.


Assuntos
Anticorpos Monoclonais/farmacologia , Especificidade de Anticorpos , Carcinoma de Células Escamosas/terapia , Epitopos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/imunologia , Anticorpos de Cadeia Única/uso terapêutico , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais Humanizados , Afinidade de Anticorpos , Linhagem Celular Tumoral , Cetuximab , Humanos , Camundongos , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...