Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 468(7324): 673-6, 2010 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-21085118

RESUMO

Antimatter was first predicted in 1931, by Dirac. Work with high-energy antiparticles is now commonplace, and anti-electrons are used regularly in the medical technique of positron emission tomography scanning. Antihydrogen, the bound state of an antiproton and a positron, has been produced at low energies at CERN (the European Organization for Nuclear Research) since 2002. Antihydrogen is of interest for use in a precision test of nature's fundamental symmetries. The charge conjugation/parity/time reversal (CPT) theorem, a crucial part of the foundation of the standard model of elementary particles and interactions, demands that hydrogen and antihydrogen have the same spectrum. Given the current experimental precision of measurements on the hydrogen atom (about two parts in 10(14) for the frequency of the 1s-to-2s transition), subjecting antihydrogen to rigorous spectroscopic examination would constitute a compelling, model-independent test of CPT. Antihydrogen could also be used to study the gravitational behaviour of antimatter. However, so far experiments have produced antihydrogen that is not confined, precluding detailed study of its structure. Here we demonstrate trapping of antihydrogen atoms. From the interaction of about 10(7) antiprotons and 7 × 10(8) positrons, we observed 38 annihilation events consistent with the controlled release of trapped antihydrogen from our magnetic trap; the measured background is 1.4 ± 1.4 events. This result opens the door to precision measurements on anti-atoms, which can soon be subjected to the same techniques as developed for hydrogen.

2.
Rev Sci Instrum ; 80(12): 123701, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20073120

RESUMO

A microchannel plate (MCP)/phosphor screen assembly has been used to destructively measure the radial profile of cold, confined antiprotons, electrons, and positrons in the ALPHA experiment, with the goal of using these trapped particles for antihydrogen creation and confinement. The response of the MCP to low energy (10-200 eV, <1 eV spread) antiproton extractions is compared to that of electrons and positrons.

3.
Phys Rev Lett ; 100(20): 203401, 2008 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-18518531

RESUMO

Control of the radial profile of trapped antiproton clouds is critical to trapping antihydrogen. We report the first detailed measurements of the radial manipulation of antiproton clouds, including areal density compressions by factors as large as ten, by manipulating spatially overlapped electron plasmas. We show detailed measurements of the near-axis antiproton radial profile and its relation to that of the electron plasma.

4.
J Egypt Soc Parasitol ; 19(1): 115-29, 1989 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-2523433

RESUMO

One hundred and one patients with bilharzial complication were selected and subjected to ultrasonography (U.S.), computed tomography (C.T.) and laparoscopy. Laparoscopy proved to be the most reliable technique in diagnosis of early pure bilharzial hepatic affection and is more specific compared to both U.S. and C.T. (P less than 0.05). U.S. proved to be more reliable than C.T in diagnosis of diffuse hepatic disorders. CT/or US are more specific in diagnosis of focal than diffuse liver diseases. CT proved to be more reliable than U.S. in detecting primary hepatocellular carcinoma and in assessment of hepatic spread.


Assuntos
Hepatopatias/diagnóstico , Fígado/patologia , Esquistossomose/diagnóstico , Adulto , Feminino , Humanos , Laparoscopia , Masculino , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA