Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 4812, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31645554

RESUMO

Neuronal networks of the mammalian motor cortex (M1) are important for dexterous control of limb joints. Yet it remains unclear how encoding of joint movement in M1 depends on varying environmental contexts. Using calcium imaging we measured neuronal activity in layer 2/3 of the M1 forelimb region while mice grasped regularly or irregularly spaced ladder rungs during locomotion. We found that population coding of forelimb joint movements is sparse and varies according to the flexibility demanded from individual joints in the regular and irregular context, even for equivalent grasping actions across conditions. This context-dependence of M1 encoding emerged during task learning, fostering higher precision of grasping actions, but broke apart upon silencing of projections from secondary motor cortex (M2). These findings suggest that M1 exploits information from M2 to adapt encoding of joint movements to the flexibility demands of distinct familiar contexts, thereby increasing the accuracy of motor output.


Assuntos
Membro Anterior , Força da Mão , Articulações/fisiologia , Locomoção/fisiologia , Córtex Motor/fisiologia , Neurônios/fisiologia , Animais , Camundongos , Córtex Motor/diagnóstico por imagem , Imagem Óptica , Optogenética , Amplitude de Movimento Articular
2.
Biochim Biophys Acta ; 1843(10): 2284-306, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24681159

RESUMO

Most chemical and, with only a few exceptions, all genetically encoded fluorimetric calcium (Ca(2+)) indicators (GECIs) emit green fluorescence. Many of these probes are compatible with red-emitting cell- or organelle markers. But the bulk of available fluorescent-protein constructs and transgenic animals incorporate green or yellow fluorescent protein (GFP and YFP respectively). This is, in part, not only heritage from the tendency to aggregate of early-generation red-emitting FPs, and due to their complicated photochemistry, but also resulting from the compatibility of green-fluorescent probes with standard instrumentation readily available in most laboratories and core imaging facilities. Photochemical constraints like limited water solubility and low quantum yield have contributed to the relative paucity of red-emitting Ca(2+) probes compared to their green counterparts, too. The increasing use of GFP and GFP-based functional reporters, together with recent developments in optogenetics, photostimulation and super-resolution microscopies, has intensified the quest for red-emitting Ca(2+) probes. In response to this demand more red-emitting chemical and FP-based Ca(2+)-sensitive indicators have been developed since 2009 than in the thirty years before. In this topical review, we survey the physicochemical properties of these red-emitting Ca(2+) probes and discuss their utility for biological Ca(2+) imaging. Using the spectral separability index Xijk (Oheim M., 2010. Methods in Molecular Biology 591: 3-16) we evaluate their performance for multi-color excitation/emission experiments, involving the identification of morphological landmarks with GFP/YFP and detecting Ca(2+)-dependent fluorescence in the red spectral band. We also establish a catalog of criteria for evaluating Ca(2+) indicators that ideally should be made available for each probe. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.


Assuntos
Cálcio/análise , Corantes Fluorescentes/química , Imagem Molecular/métodos , Optogenética/métodos , Fotoquímica/métodos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Benzofuranos/química , Compostos de Boro/química , Cálcio/metabolismo , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Humanos , Imidazóis/química , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Rodaminas/química , Espectrometria de Fluorescência , Termodinâmica , Proteína Vermelha Fluorescente
3.
J Neurosci Methods ; 215(1): 38-52, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23416135

RESUMO

Intravital microscopy such as in vivo imaging of brain dynamics is often performed with custom-built microscope setups controlled by custom-written software to meet specific requirements. Continuous technological advancement in the field has created a need for new control software that is flexible enough to support the biological researcher with innovative imaging techniques and provide the developer with a solid platform for quickly and easily implementing new extensions. Here, we introduce HelioScan, a software package written in LabVIEW, as a platform serving this dual role. HelioScan is designed as a collection of components that can be flexibly assembled into microscope control software tailored to the particular hardware and functionality requirements. Moreover, HelioScan provides a software framework, within which new functionality can be implemented in a quick and structured manner. A specific HelioScan application assembles at run-time from individual software components, based on user-definable configuration files. Due to its component-based architecture, HelioScan can exploit synergies of multiple developers working in parallel on different components in a community effort. We exemplify the capabilities and versatility of HelioScan by demonstrating several in vivo brain imaging modes, including camera-based intrinsic optical signal imaging for functional mapping of cortical areas, standard two-photon laser-scanning microscopy using galvanometric mirrors, and high-speed in vivo two-photon calcium imaging using either acousto-optic deflectors or a resonant scanner. We recommend HelioScan as a convenient software framework for the in vivo imaging community.


Assuntos
Microscopia/instrumentação , Microscopia/métodos , Neuroimagem/instrumentação , Neuroimagem/métodos , Software , Animais , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Cálcio/química , Simulação por Computador , Sistemas Computacionais , Computadores , Interpretação Estatística de Dados , Desenho de Equipamento , Processamento de Imagem Assistida por Computador , Camundongos , Microscopia Confocal , Microscopia de Vídeo
4.
J Physiol Paris ; 106(3-4): 58-61, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22321445

RESUMO

How can a Ph.D. student initially trained as a biologist take part in the development of a multineuronal recording method that requires cross interaction between physics, neurobiology and mathematics? Beyond student training in the laboratory, interdisciplinary research calls for a new style of academic training of young researchers. Here we present an innovative approach to graduate student academic training that fills the need for multidisciplinary knowledge and provides students, in addition, with a deeper understanding of the interdisciplinary approach to scientific research.


Assuntos
Educação de Pós-Graduação/métodos , Eletrodos Implantados , Estudos Interdisciplinares , Neurociências/educação , Óptica e Fotônica/educação , Aprendizagem
5.
Biomed Opt Express ; 2(7): 2035-46, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21750778

RESUMO

Functional two-photon Ca(2+)-imaging is a versatile tool to study the dynamics of neuronal populations in brain slices and living animals. However, population imaging is typically restricted to a single two-dimensional image plane. By introducing an electrically tunable lens into the excitation path of a two-photon microscope we were able to realize fast axial focus shifts within 15 ms. The maximum axial scan range was 0.7 mm employing a 40x NA0.8 water immersion objective, plenty for typically required ranges of 0.2-0.3 mm. By combining the axial scanning method with 2D acousto-optic frame scanning and random-access scanning, we measured neuronal population activity of about 40 neurons across two imaging planes separated by 40 µm and achieved scan rates up to 20-30 Hz. The method presented is easily applicable and allows upgrading of existing two-photon microscopes for fast 3D scanning.

6.
J Neurosci Methods ; 198(2): 172-80, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21458489

RESUMO

Low-magnification high-numerical aperture objectives maximize the collection efficiency for scattered two-photon excited fluorescence (2PEF), but non-descanned detection schemes for such objectives demand optical components much bigger than standard microscope optics. Fiber coupling offers the possibility of removing bulky multi-channel detectors from the collection site, but coupling and transmission losses are generally believed to outweigh the benefits of optical fibers. We present here two new developments based on large-core fiber-optic fluorescence detection that illustrate clear advantages over conventional air-coupled 2PEF detection schemes. First, with minimal modifications of a commercial microscope, we efficiently couple the output of a 20×/NA0.95 objective to a large-core liquid light guide and we obtain a 7-fold collection gain when imaging astrocytes at 100 µm depth in acute brain slices of adult ALDH1L1-GFP mice. Second, combining 2PEF microscopy and 4-color detection on a custom microscope, mode scrambling inside a 2-mm plastic optical fiber is shown to cancel out the spatially non-uniform spectral sensitivity observed with air-coupled detectors. Spectral unmixing of images of brainbow mice taken with a fiber-coupled detector revealed a uniform color distribution of hippocampal neurons across a large field of view. Thus, fiber coupling improves both the efficiency and the homogeneity of 2PEF collection.


Assuntos
Encéfalo/fisiologia , Desenho de Equipamento , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Neurônios/fisiologia , Animais , Tecnologia de Fibra Óptica , Camundongos , Camundongos Transgênicos , Fibras Ópticas
7.
Phys Chem Chem Phys ; 11(35): 7713-20, 2009 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-19950511

RESUMO

Bacteriophage lambda-DNA molecules are frequently used as a scaffold to characterize the action of single proteins unwinding, translocating, digesting or repairing DNA. However, scaling up such single-DNA-molecule experiments under identical conditions to attain statistically relevant sample sizes remains challenging. Additionally the movies obtained are frequently noisy and difficult to analyse with any precision. We address these two problems here using, firstly, a novel variable-angle total internal reflection fluorescence (VA-TIRF) reflector composed of a minimal set of optical reflective elements, and secondly, using single value decomposition (SVD) to improve the signal-to-noise ratio prior to analysing time-lapse image stacks. As an example, we visualize under identical optical conditions hundreds of surface-tethered single lambda-DNA molecules, stained with the intercalating dye YOYO-1 iodide, and stretched out in a microcapillary flow. Another novelty of our approach is that we arrange on a mechanically driven stage several capillaries containing saline, calibration buffer and lambda-DNA, respectively, thus extending the approach to high-content, high-throughput screening of single molecules. Our length measurements of individual DNA molecules from noise-reduced kymograph images using SVD display a 6-fold enhanced precision compared to raw-data analysis, reaching approximately 1 kbp resolution. Combining these two methods, our approach provides a straightforward yet powerful way of collecting statistically relevant amounts of data in a semi-automated manner. We believe that our conceptually simple technique should be of interest for a broader range of single-molecule studies, well beyond the specific example of lambda-DNA shown here.


Assuntos
Bacteriófago lambda/química , DNA Viral/análise , Microscopia de Fluorescência/instrumentação , Benzoxazóis/análise , Desenho de Equipamento , Fluorescência , Corantes Fluorescentes/análise , Substâncias Intercalantes/análise , Microscopia de Fluorescência/métodos , Compostos de Quinolínio/análise
8.
Opt Express ; 16(22): 18495-504, 2008 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-18958128

RESUMO

We report on a simple yet powerful implementation of objective-type total internal reflection fluorescence (TIRF) and highly inclined and laminated optical sheet (HILO, a type of dark-field) illumination. Instead of focusing the illuminating laser beam to a single spot close to the edge of the microscope objective, we are scanning during the acquisition of a fluorescence image the focused spot in a circular orbit, thereby illuminating the sample from various directions. We measure parameters relevant for quantitative image analysis during fluorescence image acquisition by capturing an image of the excitation light distribution in an equivalent objective backfocal plane (BFP). Operating at scan rates above 1 MHz, our programmable light engine allows directional averaging by circular spinning the spot even for sub-millisecond exposure times. We show that restoring the symmetry of TIRF/HILO illumination reduces scattering and produces an evenly lit field-of-view that affords on-line analysis of evanescnt-field excited fluorescence without pre-processing. Utilizing crossed acousto-optical deflectors, our device generates arbitrary intensity profiles in BFP, permitting variable-angle, multi-color illumination, or objective lenses to be rapidly exchanged.

9.
J Biomed Biotechnol ; 2007(7): 68963, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18273411

RESUMO

Semiconductor nanocrystals (NCs) are increasingly being used as photoluminescen markers in biological imaging. Their brightness, large Stokes shift, and high photostability compared to organic fluorophores permit the exploration of biological phenomena at the single-molecule scale with superior temporal resolution and spatial precision. NCs have predominantly been used as extracellular markers for tagging and tracking membrane proteins. Successful internalization and intracellular labelling with NCs have been demonstrated for both fixed immunolabelled and live cells. However, the precise localization and subcellular compartment labelled are less clear. Generally, live cell studies are limited by the requirement of fairly invasive protocols for loading NCs and the relatively large size of NCs compared to the cellular machinery, along with the subsequent sequestration of NCs in endosomal/lysosomal compartments. For long-period observation the potential cytotoxicity of cytoplasmically loaded NCs must be evaluated. This review focuses on the challenges of intracellular uses of NCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...