Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 71: 103117, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479223

RESUMO

Accumulation of reactive oxygen species (i.e., oxidative stress) is a leading cause of beta cell dysfunction and apoptosis in diabetes. NRF2 (NF-E2 p45-related factor-2) regulates the adaptation to oxidative stress, and its activity is negatively regulated by the redox-sensitive CUL3 (cullin-3) ubiquitin ligase substrate adaptor KEAP1 (Kelch-like ECH-associated protein-1). Additionally, NRF2 is repressed by the insulin-regulated Glycogen Synthase Kinase-3 (GSK3). We have demonstrated that phosphorylation of NRF2 by GSK3 enhances ß-TrCP (beta-transducin repeat-containing protein) binding and ubiquitylation by CUL1 (cullin-1), resulting in increased proteasomal degradation of NRF2. Thus, we hypothesise that inhibition of GSK3 activity or ß-TrCP binding upregulates NRF2 and so protects beta cells against oxidative stress. We have found that treating the pancreatic beta cell line INS-1 832/13 with the KEAP1 inhibitor TBE31 significantly enhanced NRF2 protein levels. The presence of the GSK3 inhibitor CT99021 or the ß-TrCP-NRF2 protein-protein interaction inhibitor PHAR, along with TBE31, resulted in prolonged NRF2 stability and enhanced nuclear localisation (P < 0.05). TBE31-mediated induction of NRF2-target genes encoding NAD(P)H quinone oxidoreductase 1 (Nqo1), glutamate-cysteine ligase modifier (Gclm) subunit and heme oxygenase (Hmox1) was significantly enhanced by the presence of CT99021 or PHAR (P < 0.05) in both INS-1 832/13 and in isolated mouse islets. Identical results were obtained using structurally distinct GSK3 inhibitors and inhibition of KEAP1 with sulforaphane. In summary, we demonstrate that GSK3 and ß-TrCP/CUL1 regulate the proteasomal degradation of NRF2, enhancing the impact of KEAP1 regulation, and so contributes to the redox status of pancreatic beta cells. Inhibition of GSK3, or ß-TrCP/CUL1 binding to NRF2 may represent a strategy to protect beta cells from oxidative stress.


Assuntos
Quinase 3 da Glicogênio Sintase , Células Secretoras de Insulina , Animais , Camundongos , Proteínas Contendo Repetições de beta-Transducina/genética , Proteínas Contendo Repetições de beta-Transducina/metabolismo , Proteínas Culina/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Células Secretoras de Insulina/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Estabilidade Proteica , Transcrição Gênica
2.
Mol Metab ; 77: 101807, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37717665

RESUMO

OBJECTIVES: Metformin is the first line therapy recommended for type 2 diabetes. However, the precise mechanism of action remains unclear and up to a quarter of patients show some degree of intolerance to the drug, with a similar number showing poor response to treatment, limiting its effectiveness. A better understanding of the mechanism of action of metformin may improve its clinical use. SLC2A2 (GLUT2) is a transmembrane facilitated glucose transporter, with important roles in the liver, gut and pancreas. Our group previously identified single nucleotide polymorphisms in the human SLC2A2 gene, which were associated with reduced transporter expression and an improved response to metformin treatment. The aims of this study were to model Slc2a2 deficiency and measure the impact on glucose homoeostasis and metformin response in mice. METHODS: We performed extensive metabolic phenotyping and 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG)-positron emission tomography (PET) analysis of gut glucose uptake in high-fat diet-fed (HFD) mice with whole-body reduced Slc2a2 (Slc2a2+/-) and intestinal Slc2a2 KO, to assess the impact of metformin treatment. RESULTS: Slc2a2 partial deficiency had no major impact on body weight and insulin sensitivity, however mice with whole-body reduced Slc2a2 expression (Slc2a2+/-) developed an age-related decline in glucose homoeostasis (as measured by glucose tolerance test) compared to wild-type (Slc2a2+/+) littermates. Glucose uptake into the gut from the circulation was enhanced by metformin exposure in Slc2a2+/+ animals fed HFD and this action of the drug was significantly higher in Slc2a2+/- animals. However, there was no effect of specifically knocking-out Slc2a2 in the mouse intestinal epithelial cells. CONCLUSIONS: Overall, this work identifies a differential metformin response, dependent on expression of the SLC2A2 glucose transporter, and also adds to the growing evidence that metformin efficacy includes modifying glucose transport in the gut. We also describe a novel and important role for this transporter in maintaining efficient glucose homoeostasis during ageing.

3.
PLoS One ; 16(7): e0253533, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34197485

RESUMO

The biguanide, metformin, is the first-choice therapeutic agent for type-2 diabetes, although the mechanisms that underpin metformin clinical efficacy remain the subject of much debate, partly due to the considerable variation in patient response to metformin. Identification of poor responders by genotype could avoid unnecessary treatment and provide clues to the underlying mechanism of action. GWAS identified SNPs associated with metformin treatment success at a locus containing the NPAT (nuclear protein, ataxia-telangiectasia locus) and ATM (ataxia-telangiectasia mutated) genes. This implies that gene sequence dictates a subsequent biological function to influence metformin action. Hence, we modified expression of NPAT in immortalized cell lines, primary mouse hepatocytes and mouse tissues, and analysed the outcomes on metformin action using confocal microscopy, immunoblotting and immunocytochemistry. In addition, we characterised the metabolic phenotype of npat heterozygous knockout mice and established the metformin response following development of insulin resistance. NPAT protein was localised in the nucleus at discrete loci in several cell types, but over-expression or depletion of NPAT in immortalised cell models did not change cellular responses to biguanides. In contrast, metformin regulation of respiratory exchange ratio (RER) was completely lost in animals lacking one allele of npat. There was also a reduction in metformin correction of impaired glucose tolerance, however no other metabolic abnormalities, or response to metformin, were found in the npat heterozygous mice. In summary, we provide methodological advancements for the detection of NPAT, demonstrate that minor reductions in NPAT mRNA levels (20-40%) influence metformin regulation of RER, and propose that the association between NPAT SNPs and metformin response observed in GWAS, could be due to loss of metformin modification of cellular fuel usage.


Assuntos
Glicemia/análise , Proteínas de Ciclo Celular/genética , Índice Glicêmico/efeitos dos fármacos , Hipoglicemiantes/uso terapêutico , Metformina/uso terapêutico , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Linhagem Celular Tumoral , Diabetes Mellitus Tipo 2/tratamento farmacológico , Estudo de Associação Genômica Ampla , Índice Glicêmico/fisiologia , Células HEK293 , Células Hep G2 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Polimorfismo de Nucleotídeo Único/genética
4.
BMC Res Notes ; 13(1): 438, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938474

RESUMO

OBJECTIVES: GLUT2 is a major facilitative glucose transporter, expressed from the SLC2A2 gene, with essential roles in the liver. Recent work in mice has shown that preventing Glut2 production in specific neuronal populations increases sugar-seeking behaviour, highlighting the importance of Slc2a2 gene expression in the brain. It implies that reduced GLUT2 in the brain, due to genetic polymorphisms or disease, impacts health through behaviour change. Defects in glucose transport in the brain are observed in conditions including type-2 diabetes and dementia. Few studies have directly examined the effect of modulating neuronal glucose transporter expression on cognitive function. The aim of this study was to investigate whether inactivating one Slc2a2 allele throughout the body had major effects on cognition. Cognitive tests to assess recognition memory, spatial working memory and anxiety were performed in Slc2a2 whole-body heterozygous mice (i.e. reduced Glut2 mRNA and protein), alongside littermates expressing normal levels of the transporter. RESULTS: No significant effects on neurological functions and cognitive capabilities were observed in mice lacking one Slc2a2 allele when fed a chow diet. This suggests that the minor variations in GLUT2 levels that occur in the human population are unlikely to influence behaviour and basic cognition.


Assuntos
Diabetes Mellitus Tipo 2 , Animais , Cognição , Expressão Gênica , Glucose , Fígado , Masculino , Camundongos , RNA Mensageiro
5.
Front Mol Neurosci ; 12: 163, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31316348

RESUMO

Lithium has been used for decades to treat Bipolar Disorder. Some of its therapeutic benefits may be through inhibition of Glycogen Synthase Kinase (GSK)-3. Enhanced GSK3 activity associates with development of Alzheimer's disease (AD), therefore lithium is a currently used therapeutic with potential to be repurposed for prevention of Dementia. An important step toward a clinical trial for AD prevention using lithium is to establish the dose of lithium that blocks GSK3 in Mild Cognitive Impairment (MCI), a high-risk condition for progression to AD. We investigated volunteer recruitment, retention, and tolerance in this population, and assessed biomarkers of GSK3 in MCI compared to control and after lithium treatment. Recruitment was close to target, with higher than anticipated interest. Drop out was not related to lithium blood concentration. Indeed, 33% of the withdrawals were in the first week of very low dose lithium. Most made it through to the highest dose of lithium with no adverse events. We analyzed 18 potential biomarkers of GSK3 biology in rat PBMCs, but only four of these gave a robust reproducible baseline signal. The only biomarker that was modified by acute lithium injection in the rat was the inhibitory phosphorylation of Ser9 of GSK3beta (enhanced in PBMCs) and this associated with reduced activity of GSK3beta. In contrast to the rat PBMC preparations the protein quality of the human PBMC preparations was extremely variable. There was no difference between GSK3 biomarkers in MCI and control PBMC preparations and no significant effect of chronic lithium on the robust GSK3 biomarkers, indicating that the dose reached may not be sufficient to modify these markers. In summary, the high interest from the MCI population, and the lack of any adverse events, suggest that it would be relatively straightforward and safe to recruit to a larger clinical trial within this dosing regimen. However, it is clear that we will need an improved PBMC isolation process along with more robust, sensitive, and validated biomarkers of GSK3 function, in order to use GSK3 pathway regulation in human PBMC preparations as a biomarker of GSK3 inhibitor efficacy, within a clinical trial setting.

6.
Sci Rep ; 7(1): 17682, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29247183

RESUMO

Glycogen synthase kinase-3 (GSK3) regulates many physiological processes through phosphorylation of a diverse array of substrates. Inhibitors of GSK3 have been generated as potential therapies in several diseases, however the vital role GSK3 plays in cell biology makes the clinical use of GSK3 inhibitors potentially problematic. A clearer understanding of true physiological and pathophysiological substrates of GSK3 should provide opportunities for more selective, disease specific, manipulation of GSK3. To identify kinetically favourable substrates we performed a GSK3 substrate screen in heart tissue. Rab-GTPase binding effector protein 2 (RABEP2) was identified as a novel GSK3 substrate and GSK3 phosphorylation of RABEP2 at Ser200 was enhanced by prior phosphorylation at Ser204, fitting the known consensus sequence for GSK3 substrates. Both residues are phosphorylated in cells while only Ser200 phosphorylation is reduced following inhibition of GSK3. RABEP2 function was originally identified as a Rab5 binding protein. We did not observe co-localisation of RABEP2 and Rab5 in cells, while ectopic expression of RABEP2 had no effect on endosomal recycling. The work presented identifies RABEP2 as a novel primed substrate of GSK3, and thus a potential biomarker for GSK3 activity, but understanding how phosphorylation regulates RABEP2 function requires more information on physiological roles of RABEP2.


Assuntos
Quinases da Glicogênio Sintase/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Biomarcadores/metabolismo , Células Cultivadas , Células HEK293 , Humanos , Masculino , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Sprague-Dawley , Proteínas rab5 de Ligação ao GTP/metabolismo
7.
J Alzheimers Dis ; 27(3): 615-25, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21860090

RESUMO

Collapsin response mediator protein 2 (CRMP2) is an abundant brain-enriched protein that regulates neurite outgrowth. It is phosphorylated by Cdk5 and GSK3, and these modifications are abnormally high in the brains of Alzheimer's disease (AD) patients. Increased phosphorylation of CRMP2 is also apparent in mouse models of AD that express mutated AßPP and PSEN1, but not AßPP or tau alone, where it is detectable before the appearance of amyloid plaques and neurofibrillary tangles, suggesting it is an early event in AD pathogenesis. Here, we have extended these observations by showing that CRMP2 is not hyperphosphorylated in mice overexpressing mutated PSEN1 alone, or in cultured neurons treated with soluble, oligomeric Aß42 peptide. Similarly, CRMP2 phosphorylation was not increased in a mouse model of severe neurodegeneration (PMSC-1 knockout) or in cultured neurons subjected to neurotoxic concentrations of NMDA or staurosporine. Most interestingly, CRMP2 phosphorylation was not increased in frontal cortex from patients with frontotemporal lobar degeneration associated with mutations in MAPT or with Pick bodies. Together, these observations are consistent with the hypothesis that abnormal phosphorylation of CRMP2 is specific to AD and occurs downstream of excessive processing of AßPP, but that neither excessive Aß42 peptide nor neurotoxicity alone are sufficient to promote hyperphosphorylation.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Doenças Neurodegenerativas/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Sequência de Aminoácidos , Animais , Animais Recém-Nascidos , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Pessoa de Meia-Idade , Dados de Sequência Molecular , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/genética , Fosforilação/genética , Ratos Sprague-Dawley , Ovinos , Tauopatias/diagnóstico , Tauopatias/metabolismo
8.
BMC Neurosci ; 9: 100, 2008 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-18844978

RESUMO

BACKGROUND: Anaesthesia is commonly employed prior to surgical investigations and to permit icv injections in rodents. Indeed it is standard practise in many studies examining the subsequent actions of hormones and growth factors on the brain. Recent evidence that the basal activity of specific intracellular signalling proteins can be affected by anaesthesia prompted us to examine the effect of anaesthesia not only on the basal activity but also the insulin sensitivity of the major insulin signalling pathways. RESULTS: We find that urethane- and ketamine-induced anaesthesia results in rapid activation of the phosphatidylinositol (PI) 3-kinase-protein kinase B (PKB) signalling pathway in the brain, increases tau phosphorylation while at the same time reducing basal activity of the Ras-ERK pathway. Subsequent injection of insulin does not alter the activity of either the PI 3-kinase or ERK signalling pathways, indicating a degree of neuronal molecular insulin resistance. However, if body temperature is maintained during anaesthesia then there is no alteration in the basal activity of these signalling molecules. Subsequent response of both pathways to insulin injection is restored. CONCLUSION: The data is consistent with a hypothermia related alteration in neuronal signalling following anaesthesia, and emphasises the importance of maintaining the body temperature of rodents when monitoring insulin (or growth factor/neurotrophic agent) action in the brain of anesthetised rodents.


Assuntos
Anestesia , Anestésicos/farmacologia , Hipotermia Induzida , Resistência à Insulina , Insulina/administração & dosagem , Neurônios/efeitos dos fármacos , Animais , Temperatura Corporal/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Quinase 3 da Glicogênio Sintase/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Injeções Intraperitoneais , Injeções Intraventriculares , Ketamina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Uretana/farmacologia , Xilazina/farmacologia , Proteínas tau/efeitos dos fármacos , Proteínas tau/metabolismo
9.
J Biol Chem ; 283(26): 18227-37, 2008 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-18460467

RESUMO

Collapsin response mediator protein 2 (CRMP2) binds to microtubules and regulates axon outgrowth in neurons. This action is regulated by sequential phosphorylation by the kinases cyclin-dependent kinase 5 (Cdk5) and glycogen synthase kinase 3 (GSK3) at sites that are hyperphosphorylated in Alzheimer disease. The increased phosphorylation in Alzheimer disease could be due to increases in Cdk5 and/or GSK3 activity or, alternatively, through decreased activity of a CRMP phosphatase. Here we establish that dephosphorylation of CRMP2 at the residues targeted by GSK3 (Ser-518/Thr-514/Thr-509) is carried out by a protein phosphatase 1 family member in vitro, in neuroblastoma cells, and primary cortical neurons. Inhibition of GSK3 activity using insulin-like growth factor-1 or the highly selective inhibitor CT99021 causes rapid dephosphorylation of CRMP2 at these sites. In contrast, pharmacological inhibition of Cdk5 using purvalanol results in only a gradual and incomplete dephosphorylation of CRMP2 at the site targeted by Cdk5 (Ser-522), suggesting a distinct phosphatase targets this residue. A direct comparison of dephosphorylation at the Cdk5 versus GSK3 sites in vitro shows that the Cdk5 site is comparatively resistant to phosphatase treatment. The presence of the peptidyl-prolyl isomerase enzyme, Pin1, does not affect dephosphorylation of Ser-522 in vitro, in cells, or in Pin1 transgenic mice. Instead, the relatively high resistance of this site to phosphatase treatment is at least in part due to the presence of basic residues located nearby. Similar sequences in Tau are also highly resistant to phosphatase treatment. We propose that relative resistance to phosphatases might be a common feature of Cdk5 substrates and could contribute to the hyperphosphorylation of CRMP2 and Tau observed in Alzheimer disease.


Assuntos
Quinase 5 Dependente de Ciclina/metabolismo , Resistência a Medicamentos , Proteínas tau/química , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Linhagem Celular Tumoral , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Modelos Biológicos , Dados de Sequência Molecular , Peptidilprolil Isomerase de Interação com NIMA , Peptidilprolil Isomerase/metabolismo , Fosforilação , Purinas/farmacologia , Ratos
10.
Biochemistry ; 47(7): 2153-61, 2008 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-18220421

RESUMO

The identification of phosphorylation state-dependent interacting proteins provides clues as to the function of the phosphorylation. Techniques such as yeast two hybrid and co-immunoprecipitation do not employ a single species of fully phosphorylated proteins. This is a particular problem for substrates of glycogen synthase kinase-3 (GSK3), where multiple Ser/Thr residues can be targeted, almost always subsequent to a priming phosphorylation by an alternative kinase. We previously identified the brain enriched collapsin response mediator proteins (CRMP2 and CRMP4) as physiological substrates of GSK3. Cdk5 phosphorylates CRMP2 at Ser522, priming for subsequent phosphorylation at three residues by GSK3 in vitro and in vivo. It is clear that phosphorylation of CRMP2 influences axonal growth; however, the molecular processes underlying this action are not fully established. In addition, the role of phosphorylation in other actions of CRMPs has not been elucidated. We developed a novel procedure to isolate CRMP2 and CRMP4 fully phosphorylated at four sites, namely, Ser522 (by CDK5), Ser518, Thr514, and Thr509 (by GSK3). These phosphoproteins were then used to identify binding partners in rat brain lysates in direct comparison with the non-phosphorylated isoforms. We validated the approach by confirming that a previously reported interaction with tubulin-beta is regulated by phosphorylation. We also show that CRMPs (CRMP1, CRMP2, and CRMP4) form heteromers and found that these complexes may also be regulated by phosphorylation. We identified DYRK and Pin1 as novel CRMP4 binding proteins with DYRK interacting preferentially with dephospho-CRMP4 and Pin1 with phospho-CRMP4. Finally, we used this approach to identify the mitochondrial protein ANT as a novel CRMP2 and CRMP4 binding protein. We believe that this approach could be applied generally to the study of phosphorylation-dependent interactions.


Assuntos
Proteínas/metabolismo , Sequência de Aminoácidos , Animais , Técnicas In Vitro , Fosforilação , Proteínas/química , Ratos
11.
J Neurochem ; 103(3): 1132-44, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17683481

RESUMO

Collapsin response mediator protein 2 (CRMP2) is an abundant brain-enriched protein that can regulate microtubule assembly in neurons. This function of CRMP2 is regulated by phosphorylation by glycogen synthase kinase 3 (GSK3) and cyclin-dependent kinase 5 (Cdk5). Here, using novel phosphospecific antibodies, we demonstrate that phosphorylation of CRMP2 at Ser522 (Cdk5-mediated) is increased in Alzheimer's disease (AD) brain, while CRMP2 expression and phosphorylation of the closely related isoform CRMP4 are not altered. In addition, CRMP2 phosphorylation at the Cdk5 and GSK3 sites is increased in cortex and hippocampus of the triple transgenic mouse [presenilin-1 (PS1)(M146V)KI; Thy1.2-amyloid precursor protein (APP)(swe); Thy1.2tau(P301L)] that develops AD-like plaques and tangles, as well as the double (PS1(M146V)KI; Thy1.2-APP(swe)) transgenic mouse. The hyperphosphorylation is similar in magnitude to that in human AD and is evident by 2 months of age, ahead of plaque or tangle formation. Meanwhile, there is no change in CRMP2 phosphorylation in two other transgenic mouse lines that display elevated amyloid beta peptide levels (Tg2576 and APP/amyloid beta-binding alcohol dehydrogenase). Similarly, CRMP2 phosphorylation is normal in hippocampus and cortex of Tau(P301L) mice that develop tangles but not plaques. These observations implicate hyperphosphorylation of CRMP2 as an early event in the development of AD and suggest that it can be induced by a severe APP over-expression and/or processing defect.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Placa Amiloide/metabolismo , Idoso , Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Sítios de Ligação , Encéfalo/fisiopatologia , Quinase 5 Dependente de Ciclina/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Regulação da Expressão Gênica/fisiologia , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Microtúbulos/metabolismo , Emaranhados Neurofibrilares/metabolismo , Fosforilação , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...