Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(1): e0279626, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36607972

RESUMO

The experimental challenge with attenuated enterotoxigenic E. coli strain E1392/75-2A prevents diarrhea upon a secondary challenge with the same bacteria. A dose-response pilot study was performed to investigate which immunological factors are associated with this protection. Healthy subjects were inoculated with increasing E. coli doses of 1E6-1E10 CFU, and three weeks later, all participants were rechallenged with the highest dose (1E10 CFU). Gastrointestinal discomfort symptoms were recorded, and stool and blood samples were analyzed. After the primary challenge, stool frequency, diarrhea symptom scores, and E. coli-specific serum IgG (IgG-CFA/II) titer increased in a dose-dependent manner. Fecal calprotectin and serum IgG-CFA/II response after primary challenge were delayed in the lower dose groups. Even though stool frequency after the secondary challenge was inversely related to the primary inoculation dose, all E. coli doses protected against clinical symptoms upon rechallenge. Ex vivo stimulation of PBMCs with E. coli just before the second challenge resulted in increased numbers of IL-6+/TNF-α+ monocytes and mDCs than before the primary challenge, without dose-dependency. These data demonstrate that primary E. coli infection with as few as 1E6 CFU protects against a high-dose secondary challenge with a homologous attenuated strain. Increased serum IgG-CFA/II levels and E. coli-induced mDC and monocyte responses after primary challenge suggest that protection against secondary E. coli challenges is associated with adaptive as well as innate immune responses.


Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Humanos , Monócitos , Projetos Piloto , Diarreia/microbiologia , Imunoglobulina G , Anticorpos Antibacterianos
2.
ISME J ; 7(11): 2126-36, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23823494

RESUMO

Maintenance of a high degree of biodiversity in homogeneous environments is poorly understood. A complex cheese starter culture with a long history of use was characterized as a model system to study simple microbial communities. Eight distinct genetic lineages were identified, encompassing two species: Lactococcus lactis and Leuconostoc mesenteroides. The genetic lineages were found to be collections of strains with variable plasmid content and phage sensitivities. Kill-the-winner hypothesis explaining the suppression of the fittest strains by density-dependent phage predation was operational at the strain level. This prevents the eradication of entire genetic lineages from the community during propagation regimes (back-slopping), stabilizing the genetic heterogeneity in the starter culture against environmental uncertainty.


Assuntos
Queijo/microbiologia , Microbiologia de Alimentos , Variação Genética , Lactococcus lactis/fisiologia , Leuconostoc/fisiologia , Bacteriófagos/fisiologia , Genoma Bacteriano/genética , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Lactococcus lactis/virologia , Leuconostoc/genética , Leuconostoc/metabolismo , Leuconostoc/virologia , Plasmídeos/genética , RNA Ribossômico 16S/genética
3.
Appl Environ Microbiol ; 76(5): 1587-95, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20038685

RESUMO

Reliability of microbial (starter) strains in terms of quality, functional properties, growth performance, and robustness is essential for industrial applications. In an industrial fermentation process, the bacterium should be able to successfully withstand various adverse conditions during processing, such as acid, osmotic, temperature, and oxidative stresses. Besides the evolved defense mechanisms, stress-induced mutations participate in adaptive evolution for survival under stress conditions. However, this may lead to accumulation of mutant strains, which may be accompanied by loss of desired functional properties. Defining the effects of specific fermentation or processing conditions on the mutation frequency is an important step toward preventing loss of genome integrity and maintaining the productivity of industrial strains. Therefore, a set of Lactobacillus plantarum mutator reporter strains suitable for qualitative and quantitative analysis of low-frequency mutation events was developed. The mutation reporter system constructed was validated by using chemical mutagenesis (N-methyl-N'-nitro-N-nitrosoguanidine) and by controlled expression of endogenous candidate mutator genes (e.g., a truncated derivative of the L. plantarum hexA gene). Growth at different temperatures, under low-pH conditions, at high salt concentrations, or under starvation conditions did not have a significant effect on the mutation frequency. However, incubation with sublethal levels of hydrogen peroxide resulted in a 100-fold increase in the mutation frequency compared to the background mutation frequency. Importantly, when cells of L. plantarum were adapted to 42 degrees C prior to treatment with sublethal levels of hydrogen peroxide, there was a 10-fold increase in survival after peroxide treatment, and there was a concomitant 50-fold decrease in the mutation frequency. These results show that specific environmental conditions encountered by bacteria may significantly influence the genetic stability of strains, while protection against mutagenic conditions may be obtained by pretreatment of cultures with other, nonmutagenic stress conditions.


Assuntos
DNA Bacteriano/genética , Lactobacillus plantarum/genética , Mutação , Adaptação Biológica , Genes Reporter , Humanos , Peróxido de Hidrogênio/farmacologia , Lactobacillus plantarum/efeitos dos fármacos , Mutagênicos/farmacologia , Nitrosoguanidinas/farmacologia , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...