Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vet Pharmacol Ther ; 39(1): 95-7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26190674

RESUMO

P-gp (ABCB1) belongs to the group of export transporters that is expressed in various species at biological barriers. Inhibition of P-gp can lead to changes in pharmacokinetics of drugs (drug-drug interactions), which can lead to toxicity and adverse side effects. This study aimed to establish a functional assay to measure the inhibitory potential of veterinary drugs on feline P-gp by means of fluorescence-associated flow cytometry of feline lymphoma cells. In this model, PSC833 and ivermectin potently inhibited P-gp function; cyclosporine and verapamil moderately inhibited P-gp function, whereas ketoconazole, itraconazole, diazepam, and its metabolites had no effect on P-gp function. This model can be used for testing the inhibitory potency of (new) drugs on feline P-gp.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Doenças do Gato/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Linfoma/veterinária , Neoplasias do Timo/veterinária , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Animais , Gatos , Linhagem Celular Tumoral , Linfoma/metabolismo , Neoplasias do Timo/metabolismo
2.
J Vet Pharmacol Ther ; 37(1): 18-24, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23888985

RESUMO

This study aimed to assess the overall glucuronidation capacity of cats, using prototypic substrates identified for human UDP-glucuronosyltransferases (UGTs). To this end, Michaelis-Menten kinetics were established for the substrates using feline hepatic microsomal fractions, and results were compared with similar experiments carried out with dog liver microsomes. Cats are known for their low capacity of glucuronide formation, and UGT1A6 was found to be a pseudogene. However, functional studies with typical substrates were not performed and knowledge of the enzymology and genetics of other glucuronidation enzymes in felidae is lacking. The results of this study showed extremely low formation of naphthol-1-glucuronide (1.7 ± 0.4 nmol/mg protein/min), estradiol-17-glucuronide (<0.7 nmol/mg protein/min), and morphine-3-glucuronide (0.2 ± 0.03 nmol/mg protein/min), suggesting a lack of functional UGT1A6 and UGT2B7 homologues in the cat's liver. Dog liver microsomes were producing these glucuronides in much higher amounts. Glucuronide capacity was present for the substrates 17ß-estradiol (estradiol-3-glucuronide, 2.9 ± 0.2 nmol/mg protein/min) and 4-methylumbelliferone (31.3 ± 3.3 nmol/mg protein/min), assuming that cats have functional homologue enzymes to at least the human UGT1A1 and probably other UGT1A isozymes. This implies that for new drugs, glucuronidation capacity has to be investigated on a substance-to-substance base. Knowledge of the glucuronidation rate of a drug provides the basis for pharmacokinetic modeling and as a result proper dosage regimens can be established to avoid undesirable drug toxicity in cats.


Assuntos
Gatos/metabolismo , Cães/metabolismo , Glucuronídeos/metabolismo , Microssomos Hepáticos/enzimologia , Animais , Feminino , Regulação Enzimológica da Expressão Gênica/fisiologia , Glucuronosiltransferase/metabolismo , Masculino , Microssomos Hepáticos/metabolismo , Especificidade da Espécie , Especificidade por Substrato
3.
J Vet Pharmacol Ther ; 33(6): 519-27, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21062303

RESUMO

This study aimed to investigate the biotransformation of cat liver microsomes in comparison to dogs and humans using a high throughput method with fluorescent substrates and classical inhibitors specific for certain isozymes of the human cytochrome P450 (CYP) enzyme family. The metabolic activities associated with CYP1A, CYP2B, CYP2C, CYP2D, CYP2E and CYP3A were measured. Cat liver microsomes metabolized all substrates selected for the assessment of cytochrome P450 activity. The activities associated with CYP3A and CYP2B were higher than the activities of the other measured CYPs. Substrate selectivity could be demonstrated by inhibition studies with α-naphthoflavone (CYP1A), tranylcypromine/quercetine (CYP2C), quinidine (CYP2D), diethyldithiocarbamic acid (CYP2E) and ketoconazole (CYP3A) respectively. Other prototypical inhibitors used for characterization of human CYP activities such as furafylline (CYP1A), tranylcypromine (CYP2B) and sulfaphenazole (CYP2C) did not show significant effects in cat and dog liver microsomes. Moreover, IC50-values of cat CYPs differed from dog and human CYPs underlining the interspecies differences. Gender differences were observed in the oxidation of 7-ethoxy-4-trifluoromethylcoumarin (CYP2B) and 3-[2-(N, N-diethyl-N-methylamino)ethyl]-7-methoxy-4-methylcoumarin (CYP2D), which were significantly higher in male cats than in females. Conversely, oxidation of the substrates dibenzylfluorescein (CYP2C) and 7-methoxy-4-trifluoromethylcoumarin (CYP2E) showed significant higher activities in females than in male cats. Overall CYP-activities in cat liver microsomes were lower than in those from dogs or humans, except for CYP2B. The presented difference between feline and canine CYP-activities are useful to establish dose corrections for feline patients of intensively metabolized drugs licensed for dogs or humans.


Assuntos
Gatos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Cães/metabolismo , Corantes Fluorescentes/metabolismo , Microssomos Hepáticos/metabolismo , Animais , Inibidores das Enzimas do Citocromo P-450 , Feminino , Fluorometria/veterinária , Humanos , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...