Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Plant Physiol ; 241: 153029, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31499444

RESUMO

High affinity potassium transporters (HKT) are recognized as important genes for crop salt tolerance improvement. In this study, we investigated HvHKT1;5 as a candidate gene for a previously discovered quantitative trait locus that controls shoot Na+ and Na+/K+ ratio in salt-stressed barley lines on a hydroponic system. Two major haplotype groups could be distinguished for this gene in a barley collection of 95 genotypes based on the presence of three intronic insertions; a designated haplotype group A (HGA, same as reference sequence) and haplotype group B (HGB, with insertions). HGB was associated with a much stronger root expression of HKT1;5 compared to HGA, and consequently higher K+ and lower Na+ and Cl- concentrations and a lower Na+/K+ ratio in the shoots three weeks after exposure to 200 mM NaCl. Our experimental results suggest that allelic variation in the promoter region of the HGB gene is linked to the three insertions may be responsible for the observed increase in expression of HvHKT1;5 alleles after one week of salt stress induction. This study shows that in barley - similar to wheat and rice - HKT1;5 is an important contributor to natural variation in shoot Na+ exclusion.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Hordeum/metabolismo , Proteínas de Plantas/metabolismo , Brotos de Planta/metabolismo , Estresse Salino/fisiologia , Sódio/metabolismo , Alelos , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Hordeum/genética , Hordeum/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Brotos de Planta/fisiologia , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas , Locos de Características Quantitativas , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Transcriptoma
2.
Plant J ; 97(1): 112-133, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30548574

RESUMO

In recent years developments in plant phenomic approaches and facilities have gradually caught up with genomic approaches. An opportunity lies ahead to dissect complex, quantitative traits when both genotype and phenotype can be assessed at a high level of detail. This is especially true for the study of natural variation in photosynthetic efficiency, for which forward genetics studies have yielded only a little progress in our understanding of the genetic layout of the trait. High-throughput phenotyping, primarily from chlorophyll fluorescence imaging, should help to dissect the genetics of photosynthesis at the different levels of both plant physiology and development. Specific emphasis should be directed towards understanding the acclimation of the photosynthetic machinery in fluctuating environments, which may be crucial for the identification of genetic variation for relevant traits in food crops. Facilities should preferably be designed to accommodate phenotyping of photosynthesis-related traits in such environments. The use of forward genetics to study the genetic architecture of photosynthesis is likely to lead to the discovery of novel traits and/or genes that may be targeted in breeding or bio-engineering approaches to improve crop photosynthetic efficiency. In the near future, big data approaches will play a pivotal role in data processing and streamlining the phenotype-to-gene identification pipeline.


Assuntos
Variação Genética , Genoma de Planta/genética , Genômica , Fenômica , Fotossíntese/genética , Plantas/genética , Aclimatação , Produtos Agrícolas , Genótipo , Fenótipo , Melhoramento Vegetal , Desenvolvimento Vegetal/genética , Fenômenos Fisiológicos Vegetais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...