Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurogastroenterol Motil ; 25(12): e780-90, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23965154

RESUMO

BACKGROUND: In irritable bowel syndrome (IBS), familial clustering and transfer across generations may largely depend on environmental factors but this is difficult to establish in the human setting. Therefore, we aimed to set up a relevant animal model. We investigated whether susceptibility to stress induced visceral hypersensitivity in maternally separated (MS) Long Evans rats can be transferred across generations without further separation protocols and, if so, whether this depends on maternal care. METHODS: At adult age, we evaluated pre- vs post water avoidance (WA) changes in visceromotor response to distension in non-handled second filial generation offspring (NH-F2) of previously separated MS-F1 dams. Furthermore, the role of maternal care was evaluated by cross-fostering F2 offspring of NH-F1 and MS-F1 dams and subsequent sensitivity measurements at adult age. Involvement of mast cells in post stress hypersensitivity of NH-F2 rats was evaluated by mast cell stabilization. KEY RESULTS: In adult NH-F2 offspring of MS-F1 dams, post-WA hypersensitivity to colorectal distension was observed in 80% of rats compared with 19% in offspring of NH-F1 dams. Cross-fostered pups adapted to the phenotype of the foster mother: pups of NH-F1 dams nursed by MS-F1 dams showed post-WA hypersensitivity to distension at adult age and vice versa (100% and 20% respectively). In NH-F2 rats, post-WA hypersensitivity was reversed by mast cell stabilizer doxantrazole. CONCLUSIONS & INFERENCES: Maternal separated-induced susceptibility to stress-triggered visceral hypersensitivity is transferred across generations and this transfer depends on maternal care. Thus, MS is a suitable model to evaluate environmental triggers relevant to IBS clustering in families.


Assuntos
Hiperalgesia/etiologia , Comportamento Materno , Estresse Psicológico/etiologia , Animais , Colo/fisiopatologia , Modelos Animais de Doenças , Feminino , Hiperalgesia/fisiopatologia , Síndrome do Intestino Irritável/etiologia , Síndrome do Intestino Irritável/genética , Síndrome do Intestino Irritável/fisiopatologia , Masculino , Mastócitos/fisiologia , Linhagem , Ratos , Ratos Long-Evans , Estresse Psicológico/genética , Estresse Psicológico/fisiopatologia , Dor Visceral/fisiopatologia
2.
Neurogastroenterol Motil ; 24(3): 274-82, e111, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22129370

RESUMO

BACKGROUND: Acute stress-induced hypersensitivity to colorectal distention was shown to depend on corticotropin releasing factor (CRF)-induced mast cell degranulation. At present it remains unclear whether CRF also induces chronic poststress activation of these cells. Accordingly, the objective of this study was to compare pre- and poststress CRF-receptor antagonist treatment protocols for their ability to, respectively, prevent and reverse mast cell dependent visceral hypersensitivity in a rat model of neonatal maternal separation. METHODS: The visceromotor response to colonic distention was assessed in adult maternally separated and non-handled rats before and at different time points after 1 h of water avoidance (WA). Rats were treated with the mast cell stabilizer doxantrazole and the CRF receptor-antagonist α-helical-CRF (9-41). Western blotting was used to assess mucosal protein levels of the mast cell protease RMCP-2 and the tight junction protein occludin. KEY RESULTS: In maternally separated, but not in non-handled rats, WA induced chronic hypersensitivity (up to 30 days) to colorectal distention. Visceral hypersensitivity was prevented, but could not be reversed by administration of α-helical-CRF (9-41). In contrast, however, the mast cell stabilizer doxantrazole reversed visceral hypersensitivity. Compared with vehicle-treated rats, pre-WA α-helical-CRF (9-41) treated animals displayed higher mucosal RMCP-2 and occludin levels. CONCLUSIONS & INFERENCES: Water avoidance-stress leads to persistent mast cell dependent visceral hypersensitivity in maternally separated rats, which can be prevented, but not reversed by blockade of peripheral CRF-receptors. We conclude that persistent poststress mast cell activation and subsequent visceral hypersensitivity are not targeted by CRF-receptor antagonists.


Assuntos
Hormônio Liberador da Corticotropina/efeitos dos fármacos , Antagonistas de Hormônios/farmacologia , Mastócitos/efeitos dos fármacos , Mastócitos/fisiologia , Privação Materna , Fragmentos de Peptídeos/efeitos dos fármacos , Estresse Psicológico , Dor Visceral/fisiopatologia , Animais , Quimases/metabolismo , Colo/fisiologia , Eletromiografia , Feminino , Motilidade Gastrointestinal/fisiologia , Hiperalgesia/fisiopatologia , Mastócitos/citologia , Gravidez , Ratos , Ratos Long-Evans , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidores , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Estresse Psicológico/fisiopatologia , Estresse Psicológico/psicologia
3.
Neurogastroenterol Motil ; 24(2): 172-84, e91, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22122661

RESUMO

BACKGROUND: Abdominal surgery involving bowel manipulation commonly results in inflammation of the bowel wall, which leads to impaired intestinal motility and postoperative ileus (POI). Mast cells have shown to play a key role in the pathogenesis of POI in mouse models and human studies. We studied whether mast cells contribute to the pathogenesis of POI by eliciting intestinal barrier dysfunction. METHODS: C57BL/6 mice, and two mast cell-deficient mutant mice Kit(W/W-v) , and Kit(W-sh/W-sh) underwent laparotomy (L) or manipulation of the small bowel (IM). Postoperative inflammatory infiltrates and cytokine production were assessed. Epithelial barrier function was determined in Ussing chambers, by measuring transport of luminal particles to the vena mesenterica, and by assessing bacterial translocation. KEY RESULTS: In WT mice, IM resulted in pro-inflammatory cytokine and chemokine production, and neutrophil extravasation to the manipulated bowel wall. This response to IM was reduced in mast cell-deficient mice. IM caused epithelial barrier dysfunction in WT mice, but not in the two mast cell-deficient strains. IM resulted in a decrease in mean arterial pressure in both WT and mast cell-deficient mice, indicating that impaired barrier function was not explained by tissue hypoperfusion, but involved mast cell mediators. CONCLUSIONS & INFERENCES: Mast cell activation during abdominal surgery causes epithelial barrier dysfunction and inflammation of the muscularis externa of the bowel. The impairment of the epithelial barrier likely contributes to the pathogenesis of POI. Our data further underscore that mast cells are bona fide cellular targets to ameliorate POI.


Assuntos
Translocação Bacteriana , Íleus/patologia , Inflamação/patologia , Intestino Delgado/patologia , Laparotomia/efeitos adversos , Mastócitos/patologia , Animais , Modelos Animais de Doenças , Feminino , Motilidade Gastrointestinal , Íleus/etiologia , Íleus/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Intestino Delgado/metabolismo , Intestino Delgado/cirurgia , Mastócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Permeabilidade , Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA