Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 13452, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32778800

RESUMO

The groundwater crisis in northwestern India is the result of over-exploitation of groundwater resources for irrigation. The Government of India has targeted a 20 percent improvement in irrigation groundwater use efficiency. In this perspective, and using a regional-scale calibrated and validated three-dimensional groundwater flow model, this article provides the first forecasts of water levels in the study area up to the year 2028, both with and without this improvement in use efficiency. Future water levels without any mitigation efforts are anticipated to decline by up to 2.8 m/year in some areas. A simulation with a 20 percent reduction in groundwater abstraction shows spatially varied aquifer responses. Tangible results are visible in a decade, and the water-level decline rates decrease by 36-67 percent in over-exploited areas. Although increasing irrigation use efficiency provides tangible benefits, an integrated approach to agricultural water management practice that incorporates use efficiency along with other measures like water-efficient cropping patterns and rainwater harvesting may yield better results in a shorter period.

2.
Nat Commun ; 10(1): 4903, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31653869

RESUMO

The morphological development of fluvial and tidal systems is forecast more and more frequently by models in scientific and engineering studies for decision making regarding climate change mitigation, flood control, navigation and engineering works. However, many existing morphodynamic models predict unrealistically high channel incision, which is often dampened by increased gravity-driven sediment transport on side-slopes by up to two orders of magnitude too high. Here we show that such arbitrary calibrations dramatically bias sediment dynamics, channel patterns, and rate of morphological change. For five different models bracketing a range of scales and environments, we found that it is impossible to calibrate a model on both sediment transport magnitude and morphology. Consequently, present calibration practice may cause an order magnitude error in either morphology or morphological change. We show how model design can be optimized for different applications. We discuss the major implications for model interpretation and a critical knowledge gap.

3.
J Geophys Res Earth Surf ; 124(1): 195-215, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31007991

RESUMO

Shoal margin collapses of several million cubic meters have occurred in the Western Scheldt estuary, the Netherlands, on average five times a year over the last decades. While these collapses involve significant volumes of material, their effect on the channel-shoal morphology is unknown. We hypothesize that collapses dynamicize the channel-shoal interactions, which could impact the ecological functioning, flood safety, and navigation in the estuary. The objective is to investigate how locations, probability, type, and volume of shoal margin collapse affect the channel-shoal dynamics. We implemented an empirically validated parameterization for shoal margin collapses and tested its effect on simulated estuary morphological development in a Delft3D schematization of the Western Scheldt. Three sets of scenarios were analyzed for near-field and far-field effects on flow pattern and channel-shoal morphology: (1) an observed shoal margin collapse of 2014, (2) initial large collapses on 10 locations, and (3) continuous collapses predicted by our novel probabilistic model over a time span of decades. Results show that a single shoal margin collapse only affects the local dynamics in the longitudinal flow direction and dampen out within a year for typical volumes, whereas larger disturbances that reach the seaward or landward sill at tidal channel junctions grow. The direction of the strongest tidally averaged flow determined the redistribution of the collapsed sediment. We conclude that adding the process of shoal margin collapses increases the channel-shoal interactions and that in intensively dredged estuaries shoal margins oversteepen, amplifying the number of collapses, but because of dredging the natural morphological response is interrupted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA