Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38744538

RESUMO

A key aspect for the applicability of 89Zr-radioimmunoconjugates is inert modification and radiolabeling. The two commercially available bifunctional variants of the siderophore desferrioxamine (DFO), Fe-DFO-N-suc-TFP-ester and p-NCS-Bz-DFO, are most often used for clinical 89Zr-immuno-PET. The use of Fe-DFO-N-suc-TFP-ester is advantageous with regard to higher radiolysis stability and more facile assessment of radiochemical purity as well as chelator-to-mAb ratio. However, not all mAbs withstand the Fe-removal step at relatively low pH (4-4.5) using EDTA, which is needed after conjugation to allow 89Zr labeling. In this study, it was investigated whether hydroxybenzyl ethylenediamine (HBED) or the clinically approved deferiprone (DFP) can serve as an alternative for EDTA to establish a pH-independent mild method for Fe-removal and thereby broaden the applicability of Fe-DFO-N-suc-TFP-ester. Carrier-added [59Fe]Fe-DFO-N-suc-TFP-ester was used for mAb modification to enable direct tracking of the Fe-removal efficiency under various conditions. Whereas incomplete Fe-removal with HBED was observed at pH 5 or higher, Fe-removal with DFP was possible at a broad pH range (4-9). This provides a mild, pH-independent method for Fe-removal, improving the applicability and attractiveness of Fe-DFO-N-suc-TFP-ester for 89Zr-mAb preparation.

2.
EJNMMI Radiopharm Chem ; 9(1): 40, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733556

RESUMO

BACKGROUND: During the previous two decades, PET imaging of biopharmaceuticals radiolabeled with zirconium-89 has become a consistent tool in preclinical and clinical drug development and patient selection, primarily due to its advantageous physical properties that allow straightforward radiolabeling of antibodies (89Zr-immuno-PET). The extended half-life of 78.4 h permits flexibility with respect to the logistics of tracer production, transportation, and imaging and allows imaging at later points in time. Additionally, its relatively low positron energy contributes to high-sensitivity, high-resolution PET imaging. Considering the growing interest in radiolabeling antibodies, antibody derivatives, and other compound classes with 89Zr in both clinical and pre-clinical settings, there is an urgent need to acquire valuable recommendations and guidelines towards standardization of labeling procedures. MAIN BODY: This review provides an overview of the key aspects of 89Zr-radiochemistry and radiopharmaceuticals. Production of 89Zr, conjugation with the mostly used chelators and radiolabeling strategies, and quality control of the radiolabeled products are described in detail, together with discussions about alternative options and critical steps, as well as recommendations for troubleshooting. Moreover, some historical background on 89Zr-immuno-PET, coordination chemistry of 89Zr, and future perspectives are provided. This review aims to serve as a quick-start guide for scientists new to the field of 89Zr-immuno-PET and to suggest approaches for harmonization and standardization of current procedures. CONCLUSION: The favorable PET imaging characteristics of 89Zr, its excellent availability due to relatively simple production and purification processes, and the development of suitable bifunctional chelators have led to the widespread use of 89Zr. The combination of antibodies and 89Zr, known as 89Zr-immuno-PET, has become a cornerstone in drug development and patient selection in recent years. Despite the advanced state of 89Zr-immuno-PET, new developments in chelator conjugation and radiolabeling procedures, application in novel compound classes, and improved PET scanner technology and quantification methods continue to reshape its landscape towards improving clinical outcomes.

3.
EJNMMI Res ; 14(1): 18, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38358425

RESUMO

BACKGROUND: Distribution of mAbs into tumour tissue may occur via different processes contributing differently to the 89Zr-mAb uptake on PET. Target-specific binding in tumours is of main interest; however, non-specific irreversible uptake may also be present, which influences quantification. The aim was to investigate the presence of non-specific irreversible uptake in tumour tissue using Patlak linearization on 89Zr-immuno-PET data of biopsy-proven target-negative tumours. Data of two studies, including target status obtained from biopsies, were retrospectively analysed, and Patlak linearization provided the net rate of irreversible uptake (Ki). RESULTS: Two tumours were classified as CD20-negative and two as CD20-positive. Four tumours were classified as CEA-negative and nine as CEA-positive. Ki values of CD20-negative (0.43 µL/g/h and 0.92 µL/g/h) and CEA-negative tumours (mdn = 1.97 µL/g/h, interquartile range (IQR) = 1.50-2.39) were higher than zero. Median Ki values of target-negative tumours were lower than CD20-positive (1.87 µL/g/h and 1.90 µL/g/h) and CEA-positive tumours (mdn = 2.77 µL/g/h, IQR = 2.11-3.65). CONCLUSION: Biopsy-proven target-negative tumours showed irreversible uptake of 89Zr-mAbs measured in vivo using 89Zr-immuno-PET data, which suggests the presence of non-specific irreversible uptake in tumours. Consequently, for 89Zr-immuno-PET, even if the target is absent, a tumour-to-plasma ratio always increases over time.

4.
EJNMMI Res ; 14(1): 19, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363422

RESUMO

BACKGROUND: Mutations in the epidermal growth factor receptor (EGFR) kinase domain are common in non-small cell lung cancer. Conventional tyrosine kinase inhibitors target the mutation site in the ATP binding pocket, thereby inhibiting the receptor's function. However, subsequent treatment resistance mutations in the ATP binding site are common. The EGFR allosteric inhibitor, EAI045, is proposed to have an alternative mechanism of action, disrupting receptor signaling independent of the ATP-binding site. The antibody cetuximab is hypothesized to increase the number of accessible allosteric pockets for EAI045, thus increasing the potency of the inhibitor. This work aimed to gain further knowledge on pharmacokinetics, the EGFR mutation-targeting potential, and the influence of cetuximab on the uptake by radiolabeling EAI045 with carbon-11 and tritium. RESULTS: 2-(5-fluoro-2-hydroxyphenyl)-2-((2-iodobenzyl)amino)-N-(thiazol-2-yl)acetamide and 2-(5-fluoro-2-hydroxyphenyl)-N-(5-iodothiazol-2-yl)-2-(1-oxoisoindolin-2-yl)acetamide were synthesized as precursors for the carbon-11 and tritium labeling of EAI045, respectively. [11C]EAI045 was synthesized using [11C]CO in a palladium-catalyzed ring closure in a 10 ± 1% radiochemical yield (decay corrected to end of [11C]CO2 production), > 97% radiochemical purity and 26 ± 1 GBq/µmol molar activity (determined at end of synthesis) in 51 min. [3H]EAI045 was synthesized by a tritium-halogen exchange in a 0.2% radiochemical yield, 98% radiochemical purity, and 763 kBq/nmol molar activity. The ability of [11C]EAI045 to differentiate between L858R/T790M mutated EGFR expressing H1975 xenografts and wild-type EGFR expressing A549 xenografts was evaluated in female nu/nu mice. The uptake was statistically significantly higher in H1975 xenografts compared to A549 xenografts (0.45 ± 0.07%ID/g vs. 0.31 ± 0.10%ID/g, P = 0.0166). The synergy in inhibition between EAI045 and cetuximab was evaluated in vivo and in vitro. While there was some indication that cetuximab influenced the uptake of [3H]EAI045 in vitro, this could not be confirmed in vivo when tumor-bearing mice were administered cetuximab (0.5 mg), 24 h prior to injection of [11C]EAI045. CONCLUSIONS: EAI045 was successfully labeled with tritium and carbon-11, and the in vivo results indicated [11C]EAI045 may be able to distinguish between mutated and non-mutated EGFR in non-small cell lung cancer mouse models. Cetuximab was hypothesized to increase EAI045 uptake; however, no significant effect was observed on the uptake of [11C]EAI045 in vivo or [3H]EAI045 in vitro in H1975 xenografts and cells.

5.
EJNMMI Phys ; 11(1): 16, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38321232

RESUMO

BACKGROUND: PET scans using zirconium-89 labelled monoclonal antibodies (89Zr-mAbs), known as 89Zr-immuno-PET, are made to measure uptake in tumour and organ tissue. Uptake is related to the supply of 89Zr-mAbs in the blood. Measuring activity concentrations in blood, however, requires invasive blood sampling. This study aims to identify the best delineation strategy to obtain the image-derived blood concentration (IDBC) from 89Zr-immuno-PET scans. METHODS: PET imaging and blood sampling of two 89Zr-mAbs were included, 89Zr-cetuximab and 89Zr-durvalumab. For seven patients receiving 89Zr-cetuximab, PET scans on 1-2 h, 2 and 6 days post-injection (p.i.) were analysed. Five patients received three injections of 89Zr-durvalumab. The scanning protocol for the first two injections consisted of PET scanning on 2, 5 and 7 days p.i. and for the third injection only on 7 days p.i. Blood samples were drawn with every PET scan and the sample-derived blood concentration (SDBC) was used as gold standard for the IDBC. According to an in-house developed standard operating procedure, the aortic arch, ascending aorta, descending aorta and left ventricle were delineated. Bland-Altman analyses were performed to assess the bias (mean difference) and variability (1.96 times the standard deviation of the differences) between IDBC and SDBC. RESULTS: Overall, the activity concentration obtained from the IDBC was lower than from the SDBC. When comparing IDBC with SDBC, variability was smallest for the ascending aorta (20.3% and 17.0% for 89Zr-cetuximab and 89Zr-durvalumab, respectively). Variability for the other regions ranged between 17.9 and 30.8%. Bias for the ascending aorta was - 10.9% and - 11.4% for 89Zr-cetuximab and 89Zr-durvalumab, respectively. CONCLUSIONS: Image-derived blood concentrations should be obtained from delineating the ascending aorta in 89Zr-immuno-PET scans, as this results in the lowest variability with respect to sample-derived blood concentrations.

6.
J Med Chem ; 66(17): 12130-12140, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37647220

RESUMO

Brigatinib, a tyrosine kinase inhibitor (TKI) with specificity for gene rearranged anaplastic lymphoma kinase (ALK), such as the EML4-ALK, has shown a potential to inhibit mutated epidermal growth factor receptor (EGFR). In this study, N-desmethyl brigatinib was successfully synthesized as a precursor in five steps. Radiolabeling with [11C]methyl iodide produced [methylpiperazine-11C]brigatinib in a 10 ± 2% radiochemical yield, 91 ± 17 GBq/µmol molar activity, and ≥95% radiochemical purity in 49 ± 4 min. [Methylpiperazine-11C]brigatinib was evaluated in non-small cell lung cancer xenografted female nu/nu mice. An hour post-injection (p.i.), 87% of the total radioactivity in plasma originated from intact [methylpiperazine-11C]brigatinib. Significant differences in tumor uptake were observed between the endogenously EML4-ALK mutated H2228 and the control xenograft A549. The tumor-to-blood ratio in H2228 xenografts could be reduced by pretreatment with ALK inhibitor crizotinib. Tracer uptake in EGFR Del19 mutated HCC827 and EML4-ALK fusion A549 was not significantly different from uptake in A549 xenografts.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Feminino , Animais , Camundongos , Quinase do Linfoma Anaplásico , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Receptores ErbB/genética , Tomografia por Emissão de Pósitrons
7.
Nucl Med Biol ; 120-121: 108349, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37209556

RESUMO

INTRODUCTION: Osimertinib is a third-generation tyrosine kinase inhibitor (TKI) that is able to inhibit the EGFR treatment resistance mutation T790M and primary EGFR mutations Del19 and L858R. The aim of the study was to evaluate the potential of carbon-11 labeled osimertinib to be used as a tracer for the PET imaging of tumors bearing the T790M mutation. METHODS: Osimertinib was labeled with carbon-11 at two positions, and the effect of the labeling position on the metabolism and biodistribution was studied in female nu/nu mice. The mutation status specificity of osimertinib was confirmed in vitro in a cell growth inhibition experiment, and the tumor-targeting potential of the carbon-11 isotopologues was evaluated using female nu/nu mice xenografted with NSCLC cell lines; the wild-type EGFR expressing A549, the primary Del19 EGFR mutated HCC827 and the resistance T790M/L858R mutated H1975. One of the osimertinib tracers was selected based on the results acquired and evaluated for tracer specificity and selectivity by assessment of tumor uptake in a PET study where HCC827 tumor-bearing mice were pretreated with osimertinib or afatinib. RESULTS: [Methylindole-11C]- and [dimethylamine-11C]osimertinib were synthesized by 11C-methylation of precursors AZ5104 and AZ7550, respectively. Rapid metabolism of both analogs of [11C]osimertinib was observed. Although the tumor uptake and retention of [methylindole-11C]- and [dimethylamine-11C]osimertinib in tumors were similar, the tumor-to-muscle ratios appeared to be higher for [methylindole-11C]osimertinib. The highest uptake, tumor-to-blood, and tumor-to-muscle ratio were observed in the Del19 EGFR mutated HCC827 tumors. However, the specificity and selectivity of [methylindole-11C]osimertinib PET could not be demonstrated in HCC827 tumors. The uptake of [methylindole-11C]osimertinib was not significantly higher in T790M resistance mutated H1975 xenografts compared to the negative control cell line A549. CONCLUSIONS: Osimertinib was successfully labeled at two positions with carbon-11, yielding two EGFR PET tracers, [methylindole-11C]osimertinib and [dimethylamine-11C]osimertinib. The preclinical evaluation demonstrated uptake and retention in three NSCLC xenografts; A549, HCC827, and H1975. The highest uptake was observed in the primary Del19 EGFR mutated HCC827. The ability of [methylindole-11C]osimertinib to distinguish between the T790M resistance mutated H1975 xenografts and the wild-type EGFR expressing A549 could not be confirmed in the ex vivo study.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Feminino , Animais , Camundongos , Receptores ErbB/genética , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/tratamento farmacológico , Distribuição Tecidual , Inibidores de Proteínas Quinases/farmacologia , Mutação , Resistencia a Medicamentos Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Compostos de Anilina/farmacologia
8.
Eur J Nucl Med Mol Imaging ; 50(7): 2068-2080, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36859619

RESUMO

PURPOSE: Although lymphocyte activation gene-3 (LAG-3) directed therapies demonstrate promising clinical anti-cancer activity, only a subset of patients seems to benefit and predictive biomarkers are lacking. Here, we explored the potential use of the anti-LAG-3 antibody tracer [89Zr]Zr-BI 754111 as a predictive imaging biomarker and investigated its target specific uptake as well as the correlation of its tumor uptake and the tumor immune infiltration. METHODS: Patients with head and neck (N = 2) or lung cancer (N = 4) were included in an imaging substudy of a phase 1 trial with BI 754091 (anti-PD-1) and BI 754111 (anti-LAG-3). After baseline tumor biopsy and [18F]FDG-PET, patients were given 240 mg of BI 754091, followed 8 days later by administration of [89Zr]Zr-BI 754111 (37 MBq, 4 mg). PET scans were performed 2 h, 96 h, and 144 h post-injection. To investigate target specificity, a second tracer administration was given two weeks later, this time with pre-administration of 40 (N = 3) or 600 mg (N = 3) unlabeled BI 754111, followed by PET scans at 96 h and 144 h post-injection. Tumor immune cell infiltration was assessed by immunohistochemistry and RNA sequencing. RESULTS: Tracer uptake in tumors was clearly visible at the 4-mg mass dose (tumor-to-plasma ratio 1.63 [IQR 0.37-2.89]) and could be saturated by increasing mass doses (44 mg: 0.67 [IQR 0.50-0.85]; 604 mg: 0.56 [IQR 0.42-0.75]), demonstrating target specificity. Tumor uptake correlated to immune cell-derived RNA signatures. CONCLUSIONS: [89Zr]Zr-BI-754111 PET imaging shows favorable technical and biological characteristics for developing a potential predictive imaging biomarker for LAG-3-directed therapies. TRIAL REGISTRATION: ClinicalTrials.gov , NCT03780725. Registered 19 December 2018.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias de Cabeça e Pescoço , Neoplasias Pulmonares , Humanos , Radioisótopos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Tomografia por Emissão de Pósitrons/métodos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Zircônio , Linhagem Celular Tumoral
9.
Eur J Nucl Med Mol Imaging ; 50(7): 1897-1905, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36820891

RESUMO

PURPOSE: Positron emission tomography imaging of zirconium-89-labelled monoclonal antibodies (89Zr-Immuno-PET) allows for visualisation and quantification of antibody uptake in tumours in vivo. Patlak linearization provides distribution volume (VT) and nett influx rate (Ki) values, representing reversible and irreversible uptake, respectively. Standardised uptake value (SUV) and tumour-to-plasma/tumour-to-blood ratio (TPR/TBR) are often used, but their validity depends on the comparability of plasma kinetics and clearances. This study assesses the validity of SUV, TPR and TBR against Patlak Ki for quantifying irreversible 89Zr-Immuno-PET uptake in tumours. METHODS: Ten patients received 37 MBq 10 mg 89Zr-anti-EGFR with 500 mg/m2 unlabelled mAbs. Five patients received two doses of 37 MBq 89Zr-anti-HER3: 8-24 mg for the first administration and 24 mg-30 mg/kg for the second. Seven tumours from four patients showed 89Zr-anti-EGFR uptake, and 18 tumours from five patients showed 89Zr-anti-HER3 uptake. SUVpeak, TPRpeak and TBRpeak values were obtained from one to six days p.i. Patlak linearization was applied to tumour time activity curves and plasma samples to obtain Ki. RESULTS: For 89Zr-anti-EGFR, there was a small variability along the linear regression line between SUV (- 0.51-0.57), TPR (- 0.06‒0.11) and TBR (- 0.13‒0.16) on day 6 versus Ki. Similar doses of 89Zr-anti-HER3 showed similar variability for SUV (- 1.3‒1.0), TPR (- 1.1‒0.53) and TBR (- 1.5‒0.72) on day 5 versus Ki. However, for the second administration of 89Zr-anti-HER3 with a large variability in administered mass doses, SUV showed a larger variability (- 1.4‒2.3) along the regression line with Ki, which improved when using TPR (- 0.38-0.32) or TBR (- 0.56‒0.46). CONCLUSION: SUV, TPR and TBR at late time points were valid for quantifying irreversible lesional 89Zr-Immuno-PET uptake when constant mass doses were administered. However, for variable mass doses, only TPR and TBR provided reliable values for irreversible uptake, but not SUV, because SUV does not take patient and mass dose-specific plasma clearance into account.


Assuntos
Neoplasias , Tomografia por Emissão de Pósitrons , Humanos , Tomografia por Emissão de Pósitrons/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Anticorpos Monoclonais , Cinética , Zircônio
10.
Adv Drug Deliv Rev ; 191: 114613, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36343757

RESUMO

Nanomedicines are used to improve the efficacy and safety of pharmacotherapeutic interventions. Unraveling the biological behavior of nanomedicines, including their biodistribution and target site accumulation, is essential to establish design criteria that contribute to superior performance. CriPec® technology is based on amphiphilic methoxy-poly(ethylene glycol)-b-poly[N-(2-hydroxypropyl) methacrylamide lactate] (mPEG-b-pHPMAmLacn) block copolymers, which are designed to upon self-assembly covalently entrap active pharmaceutical ingredients (API) in core-crosslinked polymeric micelles (CCPM). Key features of CCPM are a prolonged circulation time, high concentrations at pathological sites, and low levels of accumulation in the majority of healthy tissues. Proprietary hydrolysable linkers allow for tunable and sustained release of entrapped API, including hydrophobic and hydrophilic small molecules, as well as peptides and oligonucleotides. Preclinical imaging experiments provided valuable information on their tumor and tissue accumulation and distribution, as well as on uptake by cancer, healthy and immune cells. The frontrunner formulation CPC634, which refers to 65 nm-sized CCPM entrapping the chemotherapeutic drug docetaxel, showed excellent pharmacokinetic properties, safety, tumor accumulation and antitumor efficacy in multiple animal models. In the clinic, CPC634 also demonstrated favorable pharmacokinetics, good tolerability, signs of efficacy, and enhanced localization in tumor tissue as compared to conventional docetaxel. PET imaging of radiolabeled CPC634 showed quantifiable accumulation in âˆ¼50 % of tumors and metastases in advanced-stage cancer patients, and demonstrated potential for use in a theranostic setting even when applied at a companion diagnostic dose. Altogether, the preclinical and clinical results obtained to date demonstrate that mPEG-b-pHPMAmLacn CCPM based on CriPec® technology are a potent, tunable, broadly applicable and well-tolerable platform for targeted drug delivery and improved anticancer therapy.


Assuntos
Antineoplásicos , Neoplasias , Animais , Micelas , Docetaxel/farmacocinética , Distribuição Tecidual , Portadores de Fármacos/química , Polietilenoglicóis/química , Polímeros/química , Neoplasias/tratamento farmacológico , Antineoplásicos/uso terapêutico
11.
J Nucl Med ; 63(12): 1880-1886, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35738904

RESUMO

Nanomedicine holds promise for the delivery of therapeutic and imaging agents to improve cancer treatment outcomes. Preclinical studies have demonstrated that high-density lipoprotein (HDL) nanoparticles accumulate in tumor tissue on intravenous administration. Whether this HDL-based nanomedicine concept is feasible in patients is unexplored. Using a multimodal imaging approach, we aimed to assess tumor uptake of exogenously administered HDL nanoparticles in patients with esophageal cancer. Methods: The HDL mimetic CER-001 was radiolabeled using 89Zr to allow for PET/CT imaging. Patients with primary esophageal cancer staged T2 and above were recruited for serial 89Zr-HDL PET/CT imaging before starting chemoradiation therapy. In addition, patients underwent routine 18F-FDG PET/CT and 3-T MRI scanning (diffusion-weighted imaging/intravoxel incoherent motion imaging and dynamic contrast-enhanced MRI) to assess tumor glucose metabolism, tumor cellularity and microcirculation perfusion, and tumor vascular permeability. Tumor biopsies were analyzed for the expression of HDL scavenger receptor class B1 and macrophage marker CD68 using immunofluorescence staining. Results: Nine patients with adenocarcinoma or squamous cell carcinoma underwent all study procedures. After injection of 89Zr-HDL (39.2 ± 1.2 [mean ± SD] MBq), blood-pool SUVmean decreased over time (11.0 ± 1.7, 6.5 ± 0.6, and 3.3 ± 0.5 at 1, 24, and 72 h, respectively), whereas liver and spleen SUVmean remained relatively constant (4.1 ± 0.6, 4.0 ± 0.8, and 4.3 ± 0.8 at 1, 24, and 72 h, respectively, for the liver; 4.1 ± 0.3, 3.4 ± 0.3, and 3.1 ± 0.4 at 1, 24, and 72 h, respectively, for the spleen) and kidney SUVmean markedly increased over time (4.1 ± 0.9, 9.3 ± 1.4, and 9.6 ± 2.0 at 1, 24, and 72 h, respectively). Tumor uptake (SUVpeak) increased over time (3.5 ± 1.1 and 5.5 ± 2.1 at 1 and 24 h, respectively [P = 0.016]; 5.7 ± 1.4 at 72 h [P = 0.001]). The effective dose of 89Zr-HDL was 0.523 ± 0.040 mSv/MBq. No adverse events were observed after the administration of 89Zr-HDL. PET/CT and 3-T MRI measures of tumor glucose metabolism, tumor cellularity and microcirculation perfusion, and tumor vascular permeability did not correlate with tumor uptake of 89Zr-HDL, suggesting that a specific mechanism mediated the accumulation of 89Zr-HDL. Immunofluorescence staining of clinical biopsies demonstrated scavenger receptor class B1 and CD68 positivity in tumor tissue, establishing a potential cellular mechanism of action. Conclusion: To our knowledge, this was the first 89Zr-HDL study in human oncology. 89Zr-HDL PET/CT imaging demonstrated that intravenously administered HDL nanoparticles accumulated in tumors of patients with esophageal cancer. The administration of 89Zr-HDL was safe. These findings may support the development of HDL nanoparticles as a clinical delivery platform for drug agents. 89Zr-HDL imaging may guide drug development and serve as a biomarker for individualized therapy.


Assuntos
Neoplasias Esofágicas , Nanopartículas , Humanos , Neoplasias Esofágicas/diagnóstico por imagem , Glucose , Lipoproteínas HDL , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos , Zircônio
12.
Pharmaceuticals (Basel) ; 15(4)2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35455447

RESUMO

Multiple small molecule PET tracers have been developed for the imaging of the epidermal growth factor receptor (EGFR). These tracers target the tyrosine kinase (TK) domain of the receptor and have been used for both quantifying EGFR expression and to differentiate between EGFR mutational statuses. However, the approaches for in vivo evaluation of these tracers are diverse and have resulted in data that are hard to compare. In this review, we analyze the historical development of the in vivo evaluation approaches, starting from the first EGFR TK PET tracer [11C]PD153035 to tracers developed based on TK inhibitors used for the clinical treatment of mutated EGFR expressing non-small cell lung cancer like [11C]erlotinib and [18F]afatinib. The evaluation of each tracer has been compiled to allow for a comparison between studies and ultimately between tracers. The main challenges for each group of tracers are thereafter discussed. Finally, this review addresses the challenges that need to be overcome to be able to efficiently drive EGFR PET imaging forward.

13.
Adv Mater ; 34(21): e2201043, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35427430

RESUMO

Several FDA/EMA-approved nanomedicines have demonstrated improved pharmacokinetics and toxicity profiles compared to their conventional chemotherapeutic counterparts. The next step to increase therapeutic efficacy depends on tumor accumulation, which can be highly heterogeneous. A clinical tool for patient stratification is urgently awaited. Therefore, a docetaxel-entrapping polymeric nanoparticle (89 Zr-CPC634) is radiolabeled, and positron emission tomography/computed tomography (PET/CT) imaging is performed in seven patients with solid tumors with two different doses of CPC634: an on-treatment (containing 60 mg m-2 docetaxel) and a diagnostic (1-2 mg docetaxel) dose (NCT03712423). Pharmacokinetic half-life for 89 Zr-CPC634 is mean 97.0 ± 14.4 h on-treatment, and 62.4 ± 12.9 h for the diagnostic dose (p = 0.003). At these doses accumulation is observed in 46% and 41% of tumor lesions with a median accumulation in positive lesions 96 h post-injection of 4.94 and 4.45%IA kg-1 (p = 0.91), respectively. In conclusion, PET/CT imaging with a diagnostic dose of 89 Zr-CPC634 accurately reflects on-treatment tumor accumulation and thus opens the possibility for patient stratification in cancer nanomedicine with polymeric nanoparticles.


Assuntos
Nanopartículas , Neoplasias , Docetaxel/uso terapêutico , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Polímeros/uso terapêutico , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons/métodos , Zircônio
14.
Diagnostics (Basel) ; 12(3)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35328149

RESUMO

Acquisition time and injected activity of 18F-fluorodeoxyglucose (18F-FDG) PET should ideally be reduced. However, this decreases the signal-to-noise ratio (SNR), which impairs the diagnostic value of these PET scans. In addition, 89Zr-antibody PET is known to have a low SNR. To improve the diagnostic value of these scans, a Convolutional Neural Network (CNN) denoising method is proposed. The aim of this study was therefore to develop CNNs to increase SNR for low-count 18F-FDG and 89Zr-antibody PET. Super-low-count, low-count and full-count 18F-FDG PET scans from 60 primary lung cancer patients and full-count 89Zr-rituximab PET scans from five patients with non-Hodgkin lymphoma were acquired. CNNs were built to capture the features and to denoise the PET scans. Additionally, Gaussian smoothing (GS) and Bilateral filtering (BF) were evaluated. The performance of the denoising approaches was assessed based on the tumour recovery coefficient (TRC), coefficient of variance (COV; level of noise), and a qualitative assessment by two nuclear medicine physicians. The CNNs had a higher TRC and comparable or lower COV to GS and BF and was also the preferred method of the two observers for both 18F-FDG and 89Zr-rituximab PET. The CNNs improved the SNR of low-count 18F-FDG and 89Zr-rituximab PET, with almost similar or better clinical performance than the full-count PET, respectively. Additionally, the CNNs showed better performance than GS and BF.

15.
Biology (Basel) ; 11(3)2022 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-35336782

RESUMO

Non-invasive imaging of atherosclerosis can help in the identification of vulnerable plaque lesions. CD40 is a co-stimulatory molecule present on various immune and non-immune cells in the plaques and is linked to inflammation and plaque instability. We hypothesize that a 89Zr-labeled anti-CD40 monoclonal antibody (mAb) tracer has the potential to bind to cells present in atherosclerotic lesions and that CD40 Positron Emission Tomography (PET) can contribute to the detection of vulnerable atherosclerotic plaque lesions. To study this, wild-type (WT) and ApoE-/- mice were fed a high cholesterol diet for 14 weeks to develop atherosclerosis. Mice were injected with [89Zr]Zr-anti-CD40 mAb and the aortic uptake was evaluated and quantified using PET/Computed Tomography (CT) imaging. Ex vivo biodistribution was performed post-PET imaging and the uptake in the aorta was assessed with autoradiography and compared with Oil red O staining to determine the tracer potential to detect atherosclerotic plaques. On day 3 and 7 post injection, analysis of [89Zr]Zr-anti-CD40 mAb PET/CT scans showed a more pronounced aortic signal in ApoE-/- compared to WT mice with an increased aorta-to-blood uptake ratio. Autoradiography revealed [89Zr]Zr-anti-CD40 mAb uptake in atherosclerotic plaque areas in ApoE-/- mice, while no signal was found in WT mice. Clear overlap was observed between plaque areas as identified by Oil red O staining and autoradiography signal of [89Zr]Zr-anti-CD40 mAb in ApoE-/- mice. In this proof of concept study, we showed that PET/CT with [89Zr]Zr-anti-CD40 mAb can detect atherosclerotic plaques. As CD40 is associated with plaque vulnerability, [89Zr]Zr-anti-CD40 mAb has the potential to become a tracer to detect vulnerable atherosclerotic plaques.

16.
EJNMMI Phys ; 9(1): 16, 2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35239050

RESUMO

PURPOSE: Low photon count in 89Zr-Immuno-PET results in images with a low signal-to-noise ratio (SNR). Since PET radiomics are sensitive to noise, this study focuses on the impact of noise on radiomic features from 89Zr-Immuno-PET clinical images. We hypothesise that 89Zr-Immuno-PET derived radiomic features have: (1) noise-induced variability affecting their precision and (2) noise-induced bias affecting their accuracy. This study aims to identify those features that are not or only minimally affected by noise in terms of precision and accuracy. METHODS: Count-split 89Zr-Immuno-PET patient scans from previous studies with three different 89Zr-labelled monoclonal antibodies were used to extract radiomic features at 50% (S50p) and 25% (S25p) of their original counts. Tumour lesions were manually delineated on the original full-count 89Zr-Immuno-PET scans. Noise-induced variability and bias were assessed using intraclass correlation coefficient (ICC) and similarity distance metric (SDM), respectively. Based on the ICC and SDM values, the radiomic features were categorised as having poor [0, 0.5), moderate [0.5, 0.75), good [0.75, 0.9), or excellent [0.9, 1] precision and accuracy. The number of features classified into these categories was compared between the S50p and S25p images using Fisher's exact test. All p values < 0.01 were considered statistically significant. RESULTS: For S50p, a total of 92% and 90% features were classified as having good or excellent ICC and SDM respectively, while for S25p, these decreased to 81% and 31%. In total, 148 features (31%) showed robustness to noise with good or moderate ICC and SDM in both S50p and S25p. The number of features classified into the four ICC and SDM categories between S50p and S25p was significantly different statistically. CONCLUSION: Several radiomic features derived from low SNR 89Zr-Immuno-PET images exhibit noise-induced variability and/or bias. However, 196 features (43%) that show minimal noise-induced variability and bias in S50p images have been identified. These features are less affected by noise and are, therefore, suitable candidates to be further studied as prognostic and predictive quantitative biomarkers in 89Zr-Immuno-PET studies.

17.
Clin Cancer Res ; 28(10): 2020-2029, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35165101

RESUMO

PURPOSE: Praluzatamab ravtansine (CX-2009) is a conditionally activated Probody drug conjugate (PDC) comprising an anti-CD166 mAb conjugated to DM4, with a protease-cleavable linker and a peptide mask that limits target engagement in normal tissue and circulation. The tumor microenvironment is enriched for proteases capable of cleaving the linker, thereby releasing the mask, allowing for localized binding of CX-2009 to CD166. CX-2009 was evaluated in a phase I/II clinical trial for patients with advanced solid tumors. PATIENTS AND METHODS: Eligible patients had metastatic cancer receiving ≥2 prior treatments. CX-2009 was administered at escalating doses every 3 weeks (0.25-10 mg/kg) or every 2 weeks (4-6 mg/kg). Primary objective was to determine the safety profile and recommended phase II dose (RP2D). RESULTS: Of 99 patients enrolled, the most prevalent subtype was breast cancer (n = 45). Median number of prior therapies was 5 (range, 1-19). Dose-limiting toxicities were observed at 8 mg/kg every 3 weeks and 6 mg/kg every 2 weeks. On the basis of tolerability, the RP2D was 7 mg/kg every 3 weeks. Tumor regressions were observed at doses ≥4 mg/kg. In the hormone receptor-positive/HER2-nonamplified breast cancer subset (n = 22), 2 patients (9%) had confirmed partial responses, and 10 patients (45%) had stable disease. Imaging with zirconium-labeled CX-2009 confirmed uptake in tumor lesions and shielding of major organs. Activated, unmasked CX-2009 was measurable in 18 of 22 posttreatment biopsies. CONCLUSIONS: CD166 is a novel, ubiquitously expressed target. CX-2009 is the first conditionally activated antibody-drug conjugate to CD166 to demonstrate both translational and clinical activity in a variety of tumor types.


Assuntos
Antineoplásicos , Neoplasias da Mama , Imunoconjugados , Maitansina , Neoplasias , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Feminino , Humanos , Imunoconjugados/efeitos adversos , Maitansina/uso terapêutico , Neoplasias/patologia , Microambiente Tumoral
18.
J Nucl Med ; 63(3): 362-367, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34272316

RESUMO

The tumor programmed death ligand 1 (PD-L1) proportion score is the current method for selecting non-small cell lung cancer (NSCLC) patients for single-agent treatment with pembrolizumab, a programmed cell death 1 (PD-1) monoclonal antibody. However, not all patients respond to therapy. Better understanding of in vivo drug behavior may help in the selection of patients who will benefit the most. Methods: NSCLC patients eligible for pembrolizumab monotherapy as first- or later-line therapy were enrolled. Patients received 2 injections of 89Zr-pembrolizumab, 1 without a preceding dose of pembrolizumab and 1 with a preceding dose of 200 mg of pembrolizumab, directly before tracer injection. Up to 4 PET/CT scans were obtained after tracer injection. After imaging acquisition, patients were treated with 200 mg of pembrolizumab every 3 wk. Tumor uptake and tracer biodistribution were visually assessed and quantified as the SUV. Tumor tracer uptake was correlated with PD-1 and PD-L1 expression and response to pembrolizumab treatment. Results: Twelve NSCLC patients were included. One patient experienced grade 3 myalgia after tracer injection. 89Zr-pembrolizumab was observed in the blood pool, liver, and spleen. Tracer uptake was visualized in 47.2% of 72 tumor lesions measuring ΒΧΡ20 mm in the long-axis diameter, and substantial uptake heterogeneity was observed within and between patients. Uptake was higher in patients with a response to pembrolizumab treatment (n = 3) than in patients without a response (n = 9), although this finding was not statistically significant (median SUVpeak, 11.4 vs. 5.7; P = 0.066). No significant correlations were found with PD-L1 or PD-1 immunohistochemistry. Conclusion:89Zr-pembrolizumab injection was safe, with only 1 grade 3 adverse event-possibly immune-related-in 12 patients. 89Zr-pembrolizumab tumor uptake was higher in patients with a response to pembrolizumab treatment but did not correlate with PD-L1 or PD-1 immunohistochemistry.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Anticorpos Monoclonais Humanizados , Antígeno B7-H1/metabolismo , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Receptor de Morte Celular Programada 1 , Distribuição Tecidual
19.
J Nucl Med ; 63(5): 686-693, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34385342

RESUMO

Better biomarkers are needed to predict treatment outcome in non-small cell lung cancer (NSCLC) patients treated with anti-programmed death-1/programmed death-ligand 1 (PD-1/PD-L1) checkpoint inhibitors. PD-L1 immunohistochemistry has limited predictive value, possibly because of tumor heterogeneity of PD-L1 expression. Noninvasive PD-L1 imaging using 89Zr-durvalumab might better reflect tumor PD-L1 expression. Methods: NSCLC patients eligible for second-line immunotherapy were enrolled. Patients received 2 injections of 89Zr-durvalumab: one without a preceding dose of unlabeled durvalumab (tracer dose only) and one with a preceding dose of 750 mg of durvalumab, directly before tracer injection. Up to 4 PET/CT scans were obtained after tracer injection. After imaging acquisition, patients were treated with 750 mg of durvalumab every 2 wk. Tracer biodistribution and tumor uptake were visually assessed and quantified as SUV, and both imaging acquisitions were compared. Tumor tracer uptake was correlated with PD-L1 expression and clinical outcome, defined as response to durvalumab treatment. Results: Thirteen patients were included, and 10 completed all scheduled PET scans. No tracer-related adverse events were observed, and all patients started durvalumab treatment. Biodistribution analysis showed 89Zr-durvalumab accumulation in the blood pool, liver, and spleen. Serial imaging showed that image acquisition 120 h after injection delivered the best tumor-to-blood pool ratio. Most tumor lesions were visualized with the tracer dose only versus the coinjection imaging acquisition (25% vs. 13.5% of all lesions). Uptake heterogeneity was observed within (SUVpeak range, 0.2-15.1) and between patients. Tumor uptake was higher in patients with treatment response or stable disease than in patients with disease progression according to RECIST 1.1. However, this difference was not statistically significant (median SUVpeak, 4.9 vs. 2.4; P = 0.06). SUVpeak correlated better with the combined tumor and immune cell PD-L1 score than with PD-L1 expression on tumor cells, although neither was statistically significant (P = 0.06 and P = 0.93, respectively). Conclusion:89Zr-durvalumab was safe, without any tracer-related adverse events, and more tumor lesions were visualized using the tracer dose-only imaging acquisition. 89Zr-durvalumab tumor uptake was higher in patients with a response to durvalumab treatment but did not correlate with tumor PD-L1 immunohistochemistry.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Anticorpos Monoclonais , Antígeno B7-H1/metabolismo , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Distribuição Tecidual
20.
Cancer Res ; 81(15): 3956-3957, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34341064

RESUMO

The high affinity of an antibody can result in restricted tumor penetration and heterogenous tumor distribution, with preferential binding of the antibody to tumor cells localized around tumor vasculature. This so-called "binding site barrier" effect limits the efficacy of antibody-based therapies like antibody-drug conjugates (ADC). In this issue, Bordeau and colleagues introduce an original approach to overcome this barrier through transient competitive inhibition of antibody-antigen binding. By coadministration of an anti-idiotypic anti-trastuzumab domain antibody as a competitive inhibitor, increased tumor penetration of trastuzumab as well as enhanced efficacy of the ADC ado-trastuzumab emtansine were observed in tumor-bearing miceSee related article by Bordeau et al., p. 4145.


Assuntos
Imunoconjugados , Neoplasias Gástricas , Ado-Trastuzumab Emtansina , Humanos , Trastuzumab
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...