Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Mater Res A ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38465895

RESUMO

Currently available focal knee resurfacing implants (FKRIs) are fully or partially composed of metals, which show a large disparity in elastic modulus relative to bone and cartilage tissue. Although titanium is known for its excellent osseointegration, the application in FKRIs can lead to potential stress-shielding and metal implants can cause degeneration of the opposing articulating cartilage due to the high resulting contact stresses. Furthermore, metal implants do not allow for follow-up using magnetic resonance imaging (MRI).To overcome the drawbacks of using metal based FKRIs, a biomimetic and MRI compatible bi-layered non-resorbable thermoplastic polycarbonate-urethane (PCU)-based FKRI was developed. The objective of this preclinical study was to evaluate the mechanical properties, biocompatibility and osteoconduction of a novel Bionate® 75D - zirconium oxide (B75D-ZrO2 ) composite material in vitro and the osseointegration of a B75D-ZrO2 composite stem PCU implant in a caprine animal model. The tensile strength and elastic modulus of the B75D-ZrO2 composite were characterized through in vitro mechanical tests under ambient and physiological conditions. In vitro biocompatibility and osteoconductivity were evaluated by exposing human mesenchymal stem cells to the B75D-ZrO2 composite and culturing the cells under osteogenic conditions. Cell activity and mineralization were assessed and compared to Bionate® 75D (B75D) and titanium disks. The in vivo osseointegration of implants containing a B75D-ZrO2 stem was compared to implants with a B75D stem and titanium stem in a caprine large animal model. After a follow-up of 6 months, bone histomorphometry was performed to assess the bone-to-implant contact area (BIC). Mechanical testing showed that the B75D-ZrO2 composite material possesses an elastic modulus in the range of the elastic modulus reported for trabecular bone. The B75D-ZrO2 composite material facilitated cell mediated mineralization to a comparable extent as titanium. A significantly higher bone-to-implant contact (BIC) score was observed in the B75D-ZrO2 implants compared to the B75D implants. The BIC of B75D-ZrO2 implants was not significantly different compared to titanium implants. A biocompatible B75D-ZrO2 composite approximating the elastic modulus of trabecular bone was developed by compounding B75D with zirconium oxide. In vivo evaluation showed an significant increase of osseointegration for B75D-ZrO2 composite stem implants compared to B75D polymer stem PCU implants. The osseointegration of B75D-ZrO2 composite stem PCU implants was not significantly different in comparison to analogous titanium stem metal implants.

2.
J Aerosol Med Pulm Drug Deliv ; 36(3): 101-111, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37172274

RESUMO

Background: Aerosol therapies with vented facemasks are considered a risk for nosocomial transmission of viruses such as severe acute respiratory syndrome coronavirus 2. The transmission risk can be decreased by minimizing aerosol leakage and filtering the exhaled air. Objective: In this study, we determined which closed facemask designs show the least leakage. Methods: Smoke leakage was quantified during in- and exhalation in a closed system with expiration filter for three infant, six child, and six adult facemasks (three times each mask), using age-appropriate anatomical face models and breathing patterns. To assess leakage, smoke release was recorded and cumulative average pixel intensity (cAPI) was calculated. Results: In the adult group, aircushion edges resulted in less leakage than soft edges (cAPI: 407 ± 250 vs. 774 ± 152) (p = 0.004). The Intersurgical® Economy 5 mask (cAPI: 146 ± 87) also released less smoke than the Intersurgical® Clearlite 5 (cAPI: 748 ± 68) mask with the same size, but different geometry and edge type (p-value <0.05). Moreover, mask size had an effect, as there was a difference between Intersurgical® Economy 4 (cAPI: 708 ± 346) and 5, which have the same geometry but a different size (p-value <0.05). Finally, repositioning masks increased the standard deviations. Mask leakage was not dependent on breathing patterns within the child group. Conclusions: Mask leakage can be minimized by using a closed system with a well-fitting mask that is appropriately positioned. To decrease leakage, and therewith minimize potential viral transmission, selecting a well-fitting mask with an aircushion edge is to be recommended.


Assuntos
COVID-19 , Adulto , Criança , Lactente , Humanos , Máscaras , Administração por Inalação , Pandemias , Aerossóis e Gotículas Respiratórios , Fumaça
3.
J Orthop Res ; 41(9): 1902-1915, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36866819

RESUMO

Current regenerative cartilage therapies are associated with several drawbacks such as dedifferentiation of chondrocytes during expansion and the formation of fibrocartilage. Optimized chondrocyte expansion and tissue formation could lead to better clinical results of these therapies. In this study, a novel chondrocyte suspension expansion protocol that includes the addition of porcine notochordal cell-derived matrix was used to self-assemble human chondrocytes from osteoarthritic (OA) and nondegenerate (ND) origin into cartilage organoids containing collagen type II and proteoglycans. Proliferation rate and viability were similar for OA and ND chondrocytes and organoids formed had a similar histologic appearance and gene expression profile. Organoids were then encapsulated in viscoelastic alginate hydrogels to form larger tissues. Chondrocytes on the outer bounds of the organoids produced a proteoglycan-rich matrix to bridge the space between organoids. In hydrogels containing ND organoids some collagen type I was observed between the organoids. Surrounding the bulk of organoids in the center of the gels, in both OA and ND gels a continuous tissue containing cells, proteoglycans and collagen type II had been produced. No difference was observed in sulphated glycosaminoglycan and hydroxyproline content between gels containing organoids from OA or ND origin after 28 days. It was concluded that OA chondrocytes, which can be harvested from leftover surgery tissue, perform similar to ND chondrocytes in terms of human cartilage organoid formation and matrix production in alginate gels. This opens possibilities for their potential to serve as a platform for cartilage regeneration but also as an in vitro model to study pathways, pathology, or drug development.


Assuntos
Cartilagem Articular , Condrócitos , Humanos , Animais , Suínos , Condrócitos/metabolismo , Hidrogéis , Colágeno Tipo II/metabolismo , Proteoglicanas/metabolismo , Fibrocartilagem , Organoides/metabolismo , Alginatos , Cartilagem Articular/metabolismo , Células Cultivadas
5.
Tissue Eng Part C Methods ; 29(1): 30-40, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36576016

RESUMO

In native articular cartilage, chondrocytes (Chy) are completely capsulated by a pericellular matrix (PCM), together called the chondron (Chn). Due to its unique properties (w.r.t. territorial matrix) and importance in mechanotransduction, the PCM and Chn may be important in regenerative strategies. The current gold standard for the isolation of Chns from cartilage dates from 1997. Although previous research already showed the low cell yield and the heterogeneity of the isolated populations, their compositions and properties have never been thoroughly characterized. This study aimed to compare enzymatic isolation methods for Chy and Chns and characterizes the isolation efficiency and quality of the PCM. Bovine articular cartilage was digested according to the 5-h (5H) gold standard Chn isolation method (0.3% dispase +0.2% collagenase II), an overnight (ON) Chn isolation (0.15% dispase +0.1% collagenase II), and an ON Chy isolation (0.15% collagenase II +0.01% hyaluronidase). Type VI collagen staining, fluorescence-activated cell sorting (FACS) analysis, specific cell sorting, and immunohistochemistry were performed using a type VI collagen staining, to study their isolation efficiency and quality of the PCM. These analyses showed a heterogeneous mixture of Chy and Chns for all three methods. Although the 5H Chn isolation resulted in the highest percentage of Chns, the cell yield was significantly lower compared to the other isolation methods. FACS, based on the type VI collagen staining, successfully sorted the three identified cell populations. To maximize Chn yield and homogeneity, the ON Chn enzymatic digestion method should be combined with type VI collagen staining and specific cell sorting. Impact statement Since chondrocytes are highly dependent on their microenvironment for maintaining phenotypic stability, it is hypothesized that using chondrons results in superior outcomes in cartilage tissue engineering. This study reveals the constitution of cell populations obtained after enzymatic digestion of articular cartilage tissue and presents an alternative method to obtain a homogeneous population of chondrons. These data can improve the impact of studies investigating the effect of the pericellular matrix on neocartilage formation.


Assuntos
Cartilagem Articular , Colágeno Tipo VI , Animais , Bovinos , Colágeno Tipo VI/análise , Colágeno Tipo VI/metabolismo , Matriz Extracelular/metabolismo , Condrócitos/metabolismo , Mecanotransdução Celular , Cartilagem Articular/fisiologia
6.
J Orthop Res ; 41(7): 1397-1406, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36403126

RESUMO

A HydroSpacer implant, that is, a swelling hydrogel confined by a spacer fabric, was developed to repair focal cartilage defects and to prevent progression into osteoarthritis. The present study evaluated the effect of implant placement height in an osteochondral (OC) plug on wear of the opposing and adjacent cartilage. Three-dimensional warp-knitted spacer fabrics, polycaprolactone with poly(4-hydroxybutyrate) pile yarns, were filled with a hyaluronic acid methacrylate and chondroitin sulfate methacrylate hydrogel. After polymerization of the hydrogel, these HydroSpacers were implanted in OC defects (ø 6 mm) created in bovine OC plugs (ø 10 mm) and allowed to swell to equilibrium. A custom-made pin-on-plate wear apparatus was used to apply simultaneous compression and sliding against bovine cartilage. Cartilage damage, visualized with Indian ink, was only seen for the group in which the HydroSpacer was placed flush with the surrounding cartilage. A significant increase on average surface roughness of the sliding path compared to the adjacent cartilage confirmed surface damage for this group. When the implants were recessed (with and without extra hydrogel layer on top of the implant), this damage was not observed, but the cartilage surrounding the implants was compressed (without damage) indicating substantial load sharing with the implant. Furthermore, it was shown that all defects treated with a HydroSpacer implant resulted in shear forces comparable to intact cartilage. Clinical significance: The present study suggests that placing a HydroSpacer implant recessed into the surrounding cartilage would decrease wear of the opposing cartilage. Altogether, this study supports the development of textile-constraining hydrogels for cartilage replacement.


Assuntos
Doenças das Cartilagens , Cartilagem Articular , Osteoartrite , Animais , Bovinos , Humanos , Cartilagem Articular/cirurgia , Próteses e Implantes , Hidrogéis
7.
J Mech Behav Biomed Mater ; 137: 105552, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36371992

RESUMO

Cartilage defects occur frequently and can lead to osteoarthritis. Hydrogels are a promising regenerative strategy for treating such defects, using their ability of mimicking the native extracellular matrix. However, commonly used hydrogels for tissue regeneration are too soft to resist load-bearing in the joint. To overcome this, an implant is being developed in which the mechanical loadbearing function originates from the osmotic pressure generated by the swelling potential of a charged hydrogel, which is restricted from swelling by a textile spacer fabric. This study aims to quantify the relationship between the swelling potential of the hydrogel and the compressive stiffness of the implant.


Assuntos
Cartilagem Articular , Hidrogéis , Suporte de Carga , Pressão Osmótica , Biomimética , Cartilagem , Engenharia Tecidual
8.
J Biomech ; 145: 111370, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36375264

RESUMO

This study aims to demonstrate the potential of ultrasound elastography as a research tool for non-destructive imaging of intra-tissue strain fields and tissue quality assessment in cartilage explants. Osteochondral plugs from bovine patellae were loaded up to 10, 40, or 70 N using a hemi-spherical indenter. The load was kept constant for 15 min, after which samples were unloaded and ultrasound imaging of strain recovery over time was performed in the indented area for 1 h. Tissue strains were determined using speckle tracking and accumulated to LaGrangian strains in the indentation direction. For all samples, strain maps showed a heterogeneous strain field, with the highest values in the superficial cartilage under the indenter tip at the bottom of the indent and decreasing values in the deeper cartilage. Strains were higher at higher load levels and tissue recovery over time was faster after indentation at 10 N than at 40 N and 70 N. At lower compression levels most displacement occurred near the surface with little deformation in the deep layers, while at higher levels strains increased more evenly in all cartilage zones. Ultrasound elastography is a promising method for high resolution imaging of intra-tissue strain fields and evaluation of cartilage quality in tissue explants in a laboratory setting. In the future, it may become a clinical diagnostic tool used to identify the extent of cartilage damage around visible defects.


Assuntos
Cartilagem Articular , Animais , Bovinos , Cartilagem Articular/diagnóstico por imagem , Ultrassonografia
9.
Gels ; 8(7)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35877542

RESUMO

The load-bearing function of articular cartilage tissue contrasts with the poor load-bearing capacity of most soft hydrogels used for its regeneration. The present study explores whether a hydrogel based on the methacrylated natural polymers chondroitin sulfate (CSMA) and hyaluronic acid (HAMA), injected into warp-knitted spacer fabrics, could be used to create a biomimetic construct with cartilage-like mechanical properties. The swelling ratio of the combined CSMA/HAMA hydrogels in the first 20 days was higher for hydrogels with a higher CSMA concentration, and these hydrogels also degraded quicker, whereas those with a 1.33 wt% of HAMA were stable for more than 120 days. When confined by a polyamide 6 (PA6) spacer fabric, the volumetric swelling of the combined CSMA/HAMA gels (10 wt%, 6.5 × CSMA:HAMA ratio) was reduced by ~53%. Both the apparent peak and the equilibrium modulus significantly increased in the PA6-restricted constructs compared to the free-swelling hydrogels after 28 days of swelling, and no significant differences in the moduli and time constant compared to native bovine cartilage were observed. Moreover, the cell viability in the CSMA/HAMA PA6 constructs was comparable to that in gelatin-methacrylamide (GelMA) PA6 constructs at one day after polymerization. These results suggest that using a HydroSpacer construct with an extracellular matrix (ECM)-like biopolymer-based hydrogel is a promising approach for mimicking the load-bearing properties of native cartilage.

10.
J Orthop Res ; 40(10): 2402-2413, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35128715

RESUMO

The clinical success of osteochondral implants depends significantly on their surface properties. In vivo, an implant may roughen over time which can decrease its performance. The present study investigates whether changes in the surface texture of metal and two types of polycarbonate urethane (PCU) focal knee resurfacing implants (FKRIs) occurred after 6 and 12 months of in vivo articulation with native goat cartilage. PCU implants which differed in stem stiffness were compared to investigate whether the stem fixating the implant in the bone influences surface topography. Using optical profilometry, 19 surface texture parameters were evaluated, including spatial distribution and functional parameters obtained from the material ratio curve. For metal implants, wear during in vivo articulation occurred mainly via material removal, as shown by the significant decrease of the core-valley transition from 91.5% in unused implants to 90% and 89.6% after 6 and 12 months, respectively. Conversely, for PCU implants, the wear mechanism consisted in either filling of the valleys or flattening of the surface by dulling of sharp peaks. This was illustrated in the change in roughness skewness from negative to positive values over 12 months of in vivo articulation. Implants with a softer stem experienced the most deformation, shown by the largest change in material ratio curve parameters. We therefore showed, using a detailed surface profilometry analysis, that the surface texture of metal and two different PCU FKRIs changes in a different way after articulation against cartilage, revealing distinct wear mechanisms of different implant materials.


Assuntos
Cabras , Prótese do Joelho , Animais , Propriedades de Superfície , Uretana
11.
Tissue Eng Part C Methods ; 28(1): 34-44, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35018813

RESUMO

Integration of an implant with the surrounding tissue is a major challenge in cartilage regeneration. It is usually assessed with in vivo animal studies at the end-stage of implant development. To reduce animal experimentation and at the same time increase screening throughput and speed up implant development, this study examined whether integration of allogeneic cell-based implants with the surrounding native cartilage could be demonstrated in an ex vivo human osteochondral culture model. Chondrocytes were isolated from smooth cartilage tissue of fresh human tibial plateaus and condyles. They were expanded for 12 days either in three-dimensional spinner flask cultures to generate organoids, or in two-dimensional culture flasks for standard cell expansion. Three implant groups were created (fibrin+organoids, fibrin+cells, and fibrin only) and used to fill a Ø 6 mm full-depth chondral defect created in human osteochondral explants (Ø 10 mm, bone length cut to 4 mm) harvested from a second set of fresh human tibial plateaus. Explants were cultured for 1 or 28 days in a double-chamber culture platform. Histology showed that after 28 days the organoids on the interface of the defect remodeled and merged, and cells migrated through the fibrin glue bridging the space between the organoids and between the organoids and the native cartilage. For both conditions, newly formed tissue rich in proteoglycans and collagen type II was present mainly on the edges and in the corners of the defect. In these matrix-rich areas, cells resided in lacunae and the newly formed tissue integrated with the surrounding native cartilage. Biochemical analysis revealed a statistically significant effect of culture time on glycosaminoglycan (GAG) content, and showed a higher hydroxyproline (HYP) content for organoid-filled implants compared with cell-filled implants at both timepoints. This ex vivo human osteochondral culture system provides possibilities for exploration and identification of promising implant strategies based on evaluation of integration and matrix production under more controlled experimental conditions than possible in vivo.


Assuntos
Doenças das Cartilagens , Cartilagem Articular , Engenharia Tecidual , Animais , Doenças das Cartilagens/patologia , Condrócitos , Condrogênese , Colágeno Tipo II/metabolismo , Humanos , Engenharia Tecidual/métodos
12.
Cartilage ; 13(2_suppl): 1540S-1550S, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34894778

RESUMO

OBJECTIVE: This study aims to evaluate the applicability of the ultrasound roughness index (URI) for quantitative assessment of cartilage quality ex vivo (post-mortem), after 6 months of in vivo articulation with a Focal Knee Resurfacing Implant (FKRI). DESIGN: Goats received a metal FKRI (n = 8) or sham surgery (n = 8) in the medial femoral condyles. After 6 months animals were sacrificed, tibial plateaus were stained with Indian ink, and macroscopic scoring of the plateaus was performed based on the ink staining. The URI was calculated from high-frequency ultrasound images at several sections, covering both areas that articulated with the implant and non-articulating areas. Cartilage quality at the most damaged medial location was evaluated with a Modified Mankin Score (MMS). RESULTS: The URI was significantly higher in the FKRI-articulating than in the sham plateaus at medial articulating sections, but not at sections that were not in direct contact with the implant, for example, under the meniscus. The mean macroscopic score and MMS were significantly higher in the FKRI-articulating group than in the sham group (P=0.035, P<0.001, respectively). Correlation coefficients between URI and macroscopic score were significant in medial areas that articulated with the implant. A significant correlation between URI and MMS was found at the most damaged medial location (ρ=0.72,P=0.0024). CONCLUSIONS: This study demonstrates the potential of URI to evaluate cartilage roughness and altered surface morphology after in vivo articulation with a metal FKRI, rendering it a promising future tool for quantitative follow-up assessment of cartilage quality.


Assuntos
Cartilagem Articular , Prótese do Joelho , Animais , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/cirurgia , Fêmur , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/cirurgia , Tíbia/diagnóstico por imagem
13.
Cartilage ; 13(2_suppl): 1501S-1512S, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-31729263

RESUMO

OBJECTIVE: The interaction between proteoglycan loss and collagen damage in articular cartilage and the effect of mechanical loading on this interaction remain unknown. The aim of this study was to answer the following questions: (1) Is proteoglycan loss dependent on the amount of collagen damage and does it depend on whether this collagen damage is superficial or internal? (2) Does repeated loading further increase the already enhanced proteoglycan loss in cartilage with collagen damage? DESIGN: Fifty-six bovine osteochondral plugs were equilibrated in phosphate-buffered saline for 24 hours, mechanically tested in compression for 8 hours, and kept in phosphate-buffered saline for another 48 hours. The mechanical tests included an overloading step to induce collagen damage, creep steps to determine tissue stiffness, and cyclic loading to induce convection. Proteoglycan release was measured before and after mechanical loading, as well as 48 hours post-loading. Collagen damage was scored histologically. RESULTS: Histology revealed different collagen damage grades after the application of mechanical overloading. After 48 hours in phosphate-buffered saline postloading, proteoglycan loss increased linearly with the amount of total collagen damage and was dependent on the presence but not the amount of internal collagen damage. In samples without collagen damage, repeated loading also resulted in increased proteoglycan loss. However, repeated loading did not further enhance the proteoglycan loss induced by damaged collagen. CONCLUSION: Proteoglycan loss is enhanced by collagen damage and it depends on the presence of internal collagen damage. Cyclic loading stimulates proteoglycan loss in healthy cartilage but does not lead to additional loss in cartilage with damaged collagen.


Assuntos
Cartilagem Articular , Animais , Cartilagem Articular/patologia , Bovinos , Colágeno , Proteoglicanas
14.
J Orthop Res ; 39(4): 871-879, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32592503

RESUMO

To reduce animal experimentation and to overcome translational issues in cartilage tissue engineering, there is a need to develop an ex vivo human tissue-based approach. This study aims to demonstrate that a human osteochondral explant at different stages of osteoarthritis (OA) can be kept in long-term culture while preserving its viability and composition. Osteochondral explants with either a smooth or fibrillated cartilage surface, representing different OA stages, were harvested from fresh human tibial plateaus. Explants were cultured for 2 or 4 weeks in a double-chamber culture platform. The biochemical content of the cartilage of cultured explants did not significantly change over a period of 4 weeks and these findings were supported by histology. Chondrocytes mostly preserved their metabolic activity during culture and active bone and marrow were found in the periphery of the explants, while metabolic activity was decreased in the bone core in cultured explants compared to fresh explants. In fibrillated explants, chondrocyte viability decreased in the periphery of the sample in cultured groups compared to fresh explants (fresh, 94 ± 6%; cultured, 64% ± 17%, 2 weeks, and 69% ± 17%, 4 weeks; P < .05). Although biochemical and histological results did not show changes within the cartilage tissue, the viability of the explants should be carefully controlled for each specific use. This system provides an alternative to explore drug treatment and implant performance under more controlled experimental conditions than possible in vivo, in combination with clinically relevant human osteochondral tissue.


Assuntos
Condrócitos/metabolismo , Osteoartrite/fisiopatologia , Engenharia Tecidual/métodos , Idoso , Idoso de 80 Anos ou mais , Artroplastia do Joelho , Osso e Ossos/patologia , Cartilagem , Cartilagem Articular/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Técnicas de Cultura de Órgãos/métodos , Tíbia/fisiopatologia , Alicerces Teciduais
15.
JOR Spine ; 3(2): e1090, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32613165

RESUMO

It has been shown that painful intervertebral discs (IVDs) were associated with a deeper innervation. However, the effect of the disc's degenerative microenvironment on neuronal outgrowth remains largely unknown. The focus of this study was to determine the influence of hypoxia on dorsal root ganglion (DRG) neurite outgrowth. Toward this aim, the DRG-derived cell line ND7/23 was either directly subjected to 2% or 20% oxygen conditions or exposed to conditioned medium (CM) collected from IVDs cultured under 2% or 20% oxygen. Viability and outgrowth analysis were performed following 3 days of exposure. Results obtained with the cell line were further validated on cultures of rabbit spinal DRG explants and dissociated DRG neurons. Results showed that hypoxia significantly increased neurite outgrowth length in ND7/23 cells, which was also validated in DRG explant and primary cell culture, although hypoxia conditioned IVD did not significantly increase ND7/23 neurite outgrowth. While hypoxia dramatically decreased the outgrowth frequency in explant cultures, it significantly increased collateral sprouting of dissociated neurons. Importantly, the hypoxia-induced decrease of outgrowth frequency at the explant level was not due to inhibition of outgrowth branching but rather to neuronal necrosis. In summary, hypoxia in DRG promoted neurite sprouting, while neuronal necrosis may reduce the density of neuronal outgrowth at the tissue level. These findings may help to explain the deeper neo-innervation found in the painful disc tissue. HIGHLIGHTS: Hypoxia promoted elongation and branching of neurite outgrowth at single cell level, but reduced outgrowth density at tissue level, possibly due to hypoxia-induced neuronal necrosis; these findings may help to explain the deeper neo-innervation found in clinically painful tissues.

16.
J Orthop Res ; 36(11): 2911-2922, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29943463

RESUMO

Osteochondral resurfacing implants are a promising treatment for focal cartilage defects. Several implant-factors may affect the clinical outcome of this treatment, such as the implant material stiffness and the accuracy of implant placement, known to be challenging. In general, softer implants are expected to be more accommodating for implant misalignment than stiffer implants, and motion is expected to increase effects from implant misalignment and stiffness. 3D finite element models of cartilage/cartilage contact were employed in which implantation angle (0°, 5°, 10°) and implant material stiffness (E = 5 MPa, 100 MPa, 2 GPa) were varied. A creep loading (0.6 MPa) was simulated, followed by a sliding motion. Creep loading resulted in low maximum collagen strains of 2.5% in the intact case compared to 11.7% with an empty defect. Implants mostly positively affected collagen strains, deviatoric strains, and hydrostatic pressures in the adjacent cartilage, but these effects were superior for correct alignment (0°). The main effect of implant misalignment was bulging of opposing cartilage tissue into the gap caused by the misalignment. This increased collagen strains and hydrostatic pressures. Deviatoric strains were increased adjacent to the gap. Subsequent sliding initially increased strains for a stiff, misaligned implant, but generally sliding decreased strains. In conclusion, implants can decrease the detrimental effect of defects, but correct implant alignment is crucial, more than implant material stiffness. Implant misalignment causes a gap, causing potentially damaging cartilage deformation during prolonged loading, for example, standing, even for soft implants. Mild motion may positively affect the cartilage. © 2018 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 36:2911-2922, 2018.


Assuntos
Artroplastia Subcondral , Modelos Biológicos , Análise de Elementos Finitos
17.
J Orthop Res ; 2018 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-29644716

RESUMO

Methodological differences between in vitro and in vivo studies on cartilage overloading complicate the comparison of outcomes. The rationale of the current review was to (i) identify consistencies and inconsistencies between in vitro and in vivo studies on mechanically-induced structural damage in articular cartilage, such that variables worth interesting to further explore using either one of these approaches can be identified; and (ii) suggest how the methodologies of both approaches may be adjusted to facilitate easier comparison and therewith stimulate translation of results between in vivo and in vitro studies. This study is anticipated to enhance our understanding of the development of osteoarthritis, and to reduce the number of in vivo studies. Generally, results of in vitro and in vivo studies are not contradicting. Both show subchondral bone damage and intact cartilage above a threshold value of impact energy. At lower loading rates, excessive loads may cause cartilage fissuring, decreased cell viability, collagen network de-structuring, decreased GAG content, an overall damage increase over time, and low ability to recover. This encourages further improvement of in vitro systems, to replace, reduce, and/or refine in vivo studies. However, differences in experimental set up and analyses complicate comparison of results. Ways to bridge the gap include (i) bringing in vitro set-ups closer to in vivo, for example, by aligning loading protocols and overlapping experimental timeframes; (ii) synchronizing analytical methods; and (iii) using computational models to translate conclusions from in vitro results to the in vivo environment and vice versa. © 2018 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. J Orthop Res 9999:1-11, 2018.

18.
Ann Biomed Eng ; 46(4): 605-615, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29423727

RESUMO

Collagen damage in articular cartilage is considered nearly irreversible and may be an early indication of cartilage degeneration. Surface fibrillation and internal collagen damage may both develop after overloading. This study hypothesizes that damage develops at these different locations, because the distribution of excessive strains varies with loading rate as a consequence of time-dependent cartilage properties. The objective is to explore whether collagen damage could preferentially occur superficially or internally, depending on the magnitude and rate of overloading. Bovine osteochondral plugs were compressed with a 2 mm diameter indenter to 15, 25, 35 and 45 N, and at 5, 60 and 120 mm/min. Surface fibrillation and internal collagen damage were graded by four observers, based on histology and staining of collagen damage. Results show that loading magnitude affects the degree of collagen damage, while loading rate dominates the location of network damage: low rates predominantly damage superficial collagen, while at high rates, internal collagen damage occurs. The proposed explanation for the rate-dependent location is that internal fluid flows govern the time-dependent internal tissue deformation and therewith the location of overstained and damaged areas. This supports the hypothesis that collagen damage development is influenced by the time-dependent material behaviour of cartilage.


Assuntos
Cartilagem Articular/lesões , Cartilagem Articular/metabolismo , Colágeno/metabolismo , Animais , Cartilagem Articular/patologia , Cartilagem Articular/fisiopatologia , Bovinos , Suporte de Carga
19.
J Biomech ; 61: 34-44, 2017 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-28807526

RESUMO

The effect of swelling of articular cartilage, caused by the fixed charge density (FCD) of proteoglycans, has not been demonstrated on knee joint mechanics during simulated walking before. In this study, the influence of the depth-wise variation of FCD was investigated on the internal collagen fibril strains and the mechanical response of the knee joint cartilage during gait using finite element (FE) analysis. The FCD distribution of tibial cartilage was implemented from sodium (23Na) MRI into a 3-D FE-model of the knee joint ("Healthy model"). For comparison, models with decreased FCD values were created according to the decrease in FCD associated with the progression of osteoarthritis (OA) ("Early OA" and "Advanced OA" models). In addition, a model without FCD was created ("No FCD" model). The effect of FCD was studied with five different collagen fibril network moduli of cartilage. Using the reference fibril network moduli, the decrease in FCD from "Healthy model" to "Early OA" and "Advanced OA" models resulted in increased axial strains (by +2 and +6%) and decreased fibril strains (by -3 and -13%) throughout the stance, respectively, calculated as mean values through cartilage depth in the tibiofemoral contact regions. Correspondingly, compared to the "Healthy model", the removal of the FCD altogether in "NoFCD model" resulted in increased mean axial strains by +16% and decreased mean fibril strains by -24%. This effect was amplified as the fibril network moduli were decreased by 80% from the reference. Then mean axial strains increased by +6, +19 and +49% and mean fibril strains decreased by -9, -20 and -32%, respectively. Our results suggest that the FCD in articular cartilage has influence on cartilage responses in the knee during walking. Furthermore, the FCD is suggested to have larger impact on cartilage function as the collagen network degenerates e.g. in OA.


Assuntos
Cartilagem Articular/metabolismo , Marcha , Articulação do Joelho/fisiologia , Adulto , Análise de Elementos Finitos , Humanos , Articulação do Joelho/metabolismo , Articulação do Joelho/fisiopatologia , Masculino , Osteoartrite/metabolismo , Osteoartrite/fisiopatologia , Proteoglicanas/metabolismo
20.
J Orthop Res ; 35(6): 1265-1273, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27500885

RESUMO

The regenerative potential of articular cartilage (AC) defects is limited and depends on defect size, biomechanical conditions, and age. Early events after overloading might be predictive for cartilage degeneration in the long term. Therefore, the present aim is to investigate the temporal response of cartilage to overloading at cell, matrix, and tissue level during the first period after mechanical overloading. In the present study, the effect of high loading (∼8 MPa) at a high rate (∼14 MPa/s) at day 0 during a 9 day period on collagen damage, gene expression, cell death, and biochemical composition in AC was investigated. A model system was developed which enabled culturing osteochondral explants after loading. Proteoglycan content was repeatedly monitored over time using µCT, whereas other evaluations required destructive measurements. Changes in matrix related gene expressions indicated a degenerative response during the first 6 h after loading. After 24 h, this was restored and data suggested an initial repair response. Cell death and microscopic damage increased after 24 h following loading. These degradative changes were not restored within the 9 day culture period, and were accompanied by a slight loss of proteoglycans at the articular surface that extended into the middle zones. The combined findings indicate that high magnitude loading of articular cartilage at a high rate induces an initial damage that later initiates a healing response that can probably not be retained due to loss of cell viability. Consequently, the matrix cannot be restored in the short term. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1265-1273, 2017.


Assuntos
Cartilagem Articular/fisiologia , Matriz Extracelular/metabolismo , Traumatismos do Joelho/metabolismo , Regeneração , Animais , Cartilagem Articular/lesões , Expressão Gênica , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...