Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Appl ; 31(6): e02378, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33988274

RESUMO

Arbuscular mycorrhizal (AM) fungi, a group of widespread fungal symbionts of crops, could be important in driving crop yield across crop rotations through plant-soil feedbacks (PSF). However, whether preceding crops have a legacy effect on the AM fungi of the subsequent crop is poorly known. We set up an outdoor mesocosm crop rotation experiment that consisted of a first phase growing either one of four pre-crops establishing AM and/or rhizobial symbiosis or not (spring barley, faba bean, lupine, canola), followed by an AM crop, winter barley. After the pre-crop harvest, carbon-rich organic substrates were applied to test whether it attenuated, accentuated or modified the effect of pre-crops. The pre-crop mycorrhizal status, but not its rhizobial status, affected the richness and composition of AM fungi, and this difference, in particular community composition, persisted and increased in the roots of winter barley. The effect of a pre-crop was driven by its single symbiotic group, not its mixed symbiotic group and/or by a crop-species-specific effect. This demonstrates that the pre-crop symbiotic group has lasting legacy effects on the AM fungal communities and may steer the AM fungal community succession across rotation phases. This effect was accentuated by sawdust amendment, but not wheat straw. Based on the previous observation of decreased crop yield after AM pre-crops, our findings suggest negative PSF at the level of the plant symbiotic group driven by a legacy effect of crop rotation history on AM fungal communities, and that a focus on crop symbiotic group offers additional understanding of PSF.


Assuntos
Hordeum , Micobioma , Micorrizas , Raízes de Plantas , Solo , Microbiologia do Solo , Simbiose
2.
Plant Environ Interact ; 2(4): 194-205, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37283701

RESUMO

Aims: Although different plant foraging responses to the two macronutrients nitrogen (N) and phosphorus (P) are well researched, the effect of timing of fertilizer application on root system architecture (RSA) remains largely unknown. We, therefore, aimed to understand how RSA of Hordeum vulgare L. responds to timing of N and P application. Methods: Plants were grown in rhizoboxes for 38 days in nutrient-poor soil and watered with nutrient solution, lacking either N or P, with the absent nutrient applied once either 2/3/4 weeks after sowing. Positive controls were continuously receiving N and P and a negative control receiving both N and P only after 3 weeks. We tracked root growth over time, measured plant biomass and nutrient uptake. Results: Late N application strongly reduced total root biomass and visible root length compared with continuous NP and late P application. Root mass fractions (total root biomass/total plant biomass) remained similar over all treatments, but relative allocation (% of total root biomass) was higher in lower depth with late N application. Shoot P concentrations remained relatively stable, but the plants receiving P later had higher N concentrations. Conclusions: Late N application had overall more negative effects on early plant growth compared with late P. We propose that future studies under field conditions should try to disentangle the effect of timing from the nutrient availability on RSA responses and hence ultimately plant performance.

3.
Front Plant Sci ; 9: 912, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30018627

RESUMO

Nitrate leaching is a pressing environmental problem in intensive agriculture. Especially after the crop harvest, leaching risk is greatest due to decomposing plant residues, and low plant nutrient uptake and evapotranspiration. The specific crop also matters: grain legumes and canola commonly result in more leftover N than the following winter crop can take up before spring. Addition of a high carbon amendment (HCA) could potentially immobilize N after harvest. We set up a 2-year mesocosm experiment to test the effects of N fertilization (40 or 160 kg N/ha), HCA addition (no HCA, wheat straw, or sawdust), and precrop plant functional group identity on winter barley yield and soil C/N ratio. Four spring precrops were sown before winter barley (white lupine, faba bean, spring canola, spring barley), which were selected based on a functional group approach (colonization by arbuscular mycorrhizal fungi [AMF] and/or N2-fixing bacteria). We also measured a subset of faba bean and spring barley for leaching over winter after harvest. As expected, N fertilization had the largest effect on winter barley yield, but precrop functional identity also significantly affected the outcome. The non-AMF precrops white lupine and canola had on average a positive effect on yield compared to the AMF precrops spring barley and faba bean under high N (23% increase). Under low N, we found only a small precrop effect. Sawdust significantly reduced the yield compared to the control or wheat straw under either N level. HCAs reduced nitrate leaching over winter, but only when faba bean was sown as a precrop. In our setup, short-term immobilization of N by HCA addition after harvest seems difficult to achieve. However, other effects such as an increase in SOM or nutrient retention could play a positive role in the long term. Contrary to the commonly found positive effect of AMF colonization, winter barley showed a greater yield when it followed a non-AMF precrop under high fertilization. This could be due to shifts of the agricultural AMF community toward parasitism.

4.
Methods Mol Biol ; 1761: 3-22, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29525945

RESUMO

In this chapter, we present methods that we routinely use to measure plant root traits in the field and under controlled environmental conditions (using rhizoboxes). We describe procedures to (1) collect, wash, and store root samples, (2) acquire images of washed root samples, and (3) measure root traits using image analysis. In addition, we also describe sampling methods for studying belowground productivity, soil exploration, and root distribution in the first soil layers at the community level (soil coring and ingrowth core method). Because the use of rhizoboxes allows a nondestructive and dynamic measurement of traits hardly accessible in the field, a section of this chapter is devoted to the acquisition and analysis of images of roots growing in rhizoboxes.


Assuntos
Desenvolvimento Vegetal , Raízes de Plantas/crescimento & desenvolvimento , Característica Quantitativa Herdável , Fenótipo , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...