Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 363: 747-755, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37778466

RESUMO

Sonoporation is the process where intracellular drug delivery is facilitated by ultrasound-driven microbubble oscillations. Several mechanisms have been proposed to relate microbubble dynamics to sonoporation including shear and normal stress. The present work aims to gain insight into the role of microbubble size on sonoporation and thereby into the relevant mechanism(s) of sonoporation. To this end, we measured the sonoporation efficiency while varying microbubble size using monodisperse microbubble suspensions. Sonoporation experiments were performed in vitro on cell monolayers using a single ultrasound pulse with a fixed frequency of 1 MHz while the acoustic pressure amplitude and pulse length were varied at 250, 500, and 750 kPa, and 10, 100, and 1000 cycles, respectively. Sonoporation efficiency was quantified using flow cytometry by measuring the FITC-dextran (4 kDa and 2 MDa) fluorescence intensity in 10,000 cells per experiment to average out inherent variations in the bioresponse. Using ultra-high-speed imaging at 10 million frames per second, we demonstrate that the bubble oscillation amplitude is nearly independent of the equilibrium bubble radius at acoustic pressure amplitudes that induce sonoporation (≥ 500 kPa). However, we show that sonoporation efficiency is strongly dependent on the equilibrium bubble size and that under all explored driving conditions most efficiently induced by bubbles with a radius of 4.7 µm. Polydisperse microbubbles with a typical ultrasound contrast agent size distribution perform almost an order of magnitude lower in terms of sonoporation efficiency than the 4.7-µm bubbles. We elucidate that for our system shear stress is highly unlikely the mechanism of action. By contrast, we show that sonoporation efficiency correlates well with an estimate of the bubble-induced normal stress.


Assuntos
Sistemas de Liberação de Medicamentos , Microbolhas , Sistemas de Liberação de Medicamentos/métodos , Ultrassonografia/métodos , Meios de Contraste , Acústica
2.
Philos Trans A Math Phys Eng Sci ; 381(2244): 20220025, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36774952

RESUMO

Collapse of lipidic ultrasound contrast agents under high-frequency compressive load has been historically interpreted by the vanishing of surface tension. By contrast, buckling of elastic shells is known to occur when costly compressible stress is released through bending. Through quasi-static compression experiments on lipidic shells, we analyse the buckling events in the framework of classical elastic buckling theory and deduce the mechanical characteristics of these shells. They are then compared with that obtained through acoustic characterization. This article is part of the theme issue 'Probing and dynamics of shock sensitive shells'.

3.
J Acoust Soc Am ; 151(6): 3993, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35778226

RESUMO

Ultrasound (US) contrast agents consist of microbubbles ranging from 1 to 10 µm in size. The acoustical response of individual microbubbles can be studied with high-frame-rate optics or an "acoustical camera" (AC). The AC measures the relative microbubble oscillation while the optical camera measures the absolute oscillation. In this article, the capabilities of the AC are extended to measure the absolute oscillations. In the AC setup, microbubbles are insonified with a high- (25 MHz) and low-frequency US wave (1-2.5 MHz). Other than the amplitude modulation (AM) from the relative size change of the microbubble (employed in Renaud, Bosch, van der Steen, and de Jong (2012a). "An 'acoustical camera' for in vitro characterization of contrast agent microbubble vibrations," Appl. Phys. Lett. 100(10), 101911, the high-frequency response from individual vibrating microbubbles contains a phase modulation (PM) from the microbubble wall displacement, which is the extension described here. The ratio of PM and AM is used to determine the absolute radius, R0. To test this sizing, the size distributions of two monodisperse microbubble populations ( R = 2.1 and 3.5 µm) acquired with the AC were matched to the distribution acquired with a Coulter counter. As a result of measuring the absolute size of the microbubbles, this "extended AC" can capture the full radial dynamics of single freely floating microbubbles with a throughput of hundreds of microbubbles per hour.


Assuntos
Microbolhas , Rádio (Anatomia) , Meios de Contraste , Ultrassonografia
4.
Front Pharmacol ; 12: 768436, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34737709

RESUMO

Chemotherapy efficacy is often reduced by insufficient drug uptake in tumor cells. The combination of ultrasound and microbubbles (USMB) has been shown to improve drug delivery and to enhance the efficacy of several drugs in vitro and in vivo, through effects collectively known as sonopermeation. However, clinical translation of USMB therapy is hampered by the large variety of (non-clinical) US set-ups and US parameters that are used in these studies, which are not easily translated to clinical practice. In order to facilitate clinical translation, the aim of this study was to prove that USMB therapy using a clinical ultrasound system (Philips iU22) in combination with clinically approved microbubbles (SonoVue) leads to efficient in vitro sonopermeation. To this end, we measured the efficacy of USMB therapy for different US probes (S5-1, C5-1 and C9-4) and US parameters in FaDu cells. The US probe with the lowest central frequency (i.e. 1.6 MHz for S5-1) showed the highest USMB-induced intracellular uptake of the fluorescent dye SYTOX™ Green (SG). These SG uptake levels were comparable to or even higher than those obtained with a custom-built US system with optimized US parameters. Moreover, USMB therapy with both the clinical and the custom-built US system increased the cytotoxicity of the hydrophilic drug bleomycin. Our results demonstrate that a clinical US system can be used to perform USMB therapy as efficiently as a single-element transducer set-up with optimized US parameters. Therefore, future trials could be based on these clinical US systems, including validated US parameters, in order to accelerate successful translation of USMB therapy.

5.
Rev Sci Instrum ; 92(3): 035110, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33820052

RESUMO

Monodisperse lipid-coated microbubbles are a promising route to unlock the full potential of ultrasound contrast agents for medical diagnosis and therapy. Here, we present a stand-alone lab-on-a-chip instrument that allows microbubbles to be formed with high monodispersity at high production rates. Key to maintaining a long-term stable, controlled, and safe operation of the microfluidic device with full control over the output size distribution is an optical transmission-based measurement technique that provides real-time information on the production rate and bubble size. We feed the data into a feedback loop and demonstrate that this system can control the on-chip bubble radius (2.5 µm-20 µm) and the production rate up to 106 bubbles/s. The freshly formed phospholipid-coated bubbles stabilize after their formation to a size approximately two times smaller than their initial on-chip bubble size without loss of monodispersity. The feedback control technique allows for full control over the size distribution of the agent and can aid the development of microfluidic platforms operated by non-specialist end users.

6.
Front Pharmacol ; 10: 1463, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31866867

RESUMO

Mistletoe lectin-1 (ML1) is a nature-derived macromolecular cytotoxin that potently induces apoptosis in target cells. Non-specific cytotoxicity to normal cells is one of the major risks in its clinical application, and we therefore propose to encapsulate ML1 in a nanocarrier that can specifically release its cargo intratumorally, thus improving the efficacy to toxicity ratio of the cytotoxin. We investigated the encapsulation of ML1 in ultrasound-sensitive liposomes (USL) and studied its release by high-intensity focused ultrasound (HAccessedIFU). USL were prepared by entrapment of perfluorocarbon nanodroplets in pegylated liposomes. The liposomes were prepared with different DPPC/cholesterol/DSPE-PEG2000 lipid molar ratios (60/20/20 for USL20; 60/30/10 for USL10; 65/30/5 for USL5) before combination with perfluorocarbon (PFC) nanoemulsions (composed of DPPC and perfluoropentane). When triggered with HIFU (peak negative pressure, 2-24 MPa; frequency, 1.3 MHz), PFC nanodroplets can undergo phase transition from liquid to gas thus rupturing the lipid bilayer of usl. Small unilamellar liposomes were obtained with appropriate polydispersity and stability. ML1 and the model protein horseradish peroxidase (HRP) were co-encapsulated with the PFC nanodroplets in USL, with 3% and 7% encapsulation efficiency for USL20 and USL10/USL5, respectively. Acoustic characterization experiments indicated that release is induced by cavitation. HIFU-triggered release of HRP from USL was investigated for optimization of liposomal composition and resulted in 80% triggered release for USL with USL10 (60/30/10) lipid composition. ML1 release from the final USL10 composition was also 80%. Given its high stability, suitable release, and ultrasound sensitivity, USL10 encapsulating ML1 was further used to study released ML1 bioactivity against murine CT26 colon carcinoma cells. Confocal live-cell imaging demonstrated its functional activity regarding the interaction with the target cells. We furthermore demonstrated the cytotoxicity of the released ML1 (I.E., After USL were treated with HIFU). The potent cytotoxicity (IC50 400 ng/ml; free ML1 IC50 345 ng/ml) was compared to non-triggered USL loaded with ML1. Our study shows that USL in combination with HIFU hold promise as trigger-sensitive nanomedicines for local delivery of macromolecular cytotoxins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...