Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Sci ; 58(1): 161-72, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11053553

RESUMO

The disposition of styrene was studied in a group of 12 Sprague Dawley rats and two groups of 30 CD1 mice exposed separately to 160 ppm [ring-U-(14)C]styrene of high specific radioactivity of 1.92 TBq x mol(-1) (52 Ci x mol(-1)) for 6 h. A nose-only exposure system was successfully adapted to (1) recirculate a portion of the flow to limit the amount of (14)C-styrene required, and (2) avoid any polymerization of the compound. The mean uptake of styrene in rats was 113 +/- 7 micromol x kg(-1) x h(-1) and stable over time. The mean uptake in mice was higher, 189 +/- 53 and 183 +/- 76 micromol x kg(-1) x h(-1), for the first and second mouse inhalation experiment, but decreased steadily over time. Some of the mice, but none of the rats, showed signs of overt toxicity. The overall excretion of styrene and its metabolites was quantitatively similar in rats and mice. Urinary excretion was the primary route of excretion while fecal excretion accounted for only a very small part of the radioactivity. There was, however, a significant difference between mice and rats in the exhalation of (14)CO(2), which must have resulted from opening and subsequent breakdown of the aromatic ring. In mice the exhalation of (14)CO(2) accounted for 6.4 +/- 1.0 and 8. 0 +/- 0.5% of the styrene retained during the first and second mouse inhalation experiment. In rats, exhalation of (14)CO(2) accounted for only 2.0 +/- 0.7% of the retained styrene. Together with the results from the quantitative whole-body autoradiography (showing significantly higher binding in mouse lung and nasal passages compared to rat) the larger production of (14)CO(2) might be indicative of the formation of reactive ring-opened metabolites in the mouse lung, which, in turn, might be related to the observed development of bronchioalveolar tumors and nasal effects in mice exposed to styrene.


Assuntos
Estireno/farmacocinética , Administração por Inalação , Animais , Autorradiografia , Radioisótopos de Carbono , Exposição por Inalação , Masculino , Camundongos , Camundongos Endogâmicos , Cavidade Nasal/efeitos dos fármacos , Cavidade Nasal/metabolismo , Exposição Ocupacional , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
2.
Xenobiotica ; 29(10): 987-1006, 1999 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-10574681

RESUMO

The inactivation of 2-oxiranylmethyl 2-ethyl-2,5-dimethylhexanoate (C10GE), one of the most abundant isomers of the epoxy-resin Carduras E-10 glycidyl ester, was studied in subcellular fractions of human, C3H mouse and F344 rat liver, lung and skin. C10GE is chemically very stable and resistant to aqueous hydrolysis, but it was rapidly metabolized in both cytosolic and microsomal fractions of all organs by epoxide hydrolase (EH)-catalysed hydrolysis of the epoxide moiety as well as carboxylesterase (CE)-catalysed hydrolysis of the ester bond. In cytosol the epoxide group was also efficiently conjugated with glutathione, catalysed by glutathione S-transferase (GST), but this conjugation was much less important than hydrolysis in human as well as rodent samples. Although CE-catalysed hydrolysis of C10GE would theoretically give rise to the formation of glycidol, a directly acting mutagen, it is highly unlikely that any significant level of glycidol would occur in vivo since reported rates of inactivation of glycidol exceed the total rate of hydrolysis of C10GE. The overall rates of inactivation in vitro decreased in the following order: mouse > rat > human. Scaling of the data in vitro to clearances in vivo suggests that the detoxifying capacity in the rodents is similar and about an order of magnitude greater than in human. Nevertheless, the rate of inactivation is 2-3 orders of magnitude greater than for simple epoxides such as butadiene monoxide and about one order of magnitude higher than for the diglycidyl ether of bisphenol A (BADGE). The transdermal penetration and metabolism of [14C]-C10GE was studied in fresh full-thickness mouse, and dermatomized human and rat skin. Of the total radioactivity applied on the skin, only 0.24+/-0.06 (SD), 1.8+/-0.2 and 6.8+/-0.6% penetrated through human, mouse and rat skin respectively. The corresponding apparent skin permeability constants were 0.81, 6.42 and 26.4 x 10(-6) cm/h. During transdermal penetration, [14C]-C10GE was extensively hydrolysed to the corresponding diol and the free acid. Only 0.01, 0.11 and 0.21]% of the applied dose was absorbed unchanged through the human, mouse and rat skin respectively.


Assuntos
Ácidos Decanoicos/farmacocinética , Óxido de Etileno/análogos & derivados , Fígado/metabolismo , Pulmão/metabolismo , Pele/metabolismo , Adulto , Animais , Óxido de Etileno/farmacocinética , Feminino , Glutationa/metabolismo , Humanos , Hidrólise , Inativação Metabólica , Masculino , Camundongos , Camundongos Endogâmicos C3H , Pessoa de Meia-Idade , Ratos , Ratos Endogâmicos F344
3.
Toxicol Sci ; 49(2): 186-201, 1999 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10416264

RESUMO

1,3-Butadiene (butadiene) is a potent carcinogen in mice, but not in rats. Metabolic studies may provide an explanation of these species differences and their relevance to humans. Male Sprague-Dawley rats and B6C3F1 mice were exposed for 6 h to 200 ppm [2,3-14C]-butadiene (specific radioactivity [sa] 20 mCi/mmol) in a Cannon nose-only system. Radioactivity in urine, feces, exhaled volatiles and 14C-CO2 were measured during and up to 42 h after exposure. The total uptake of butadiene by rats and mice under these experimental conditions was 0.19 and 0.38 mmol (equivalent to 3.8 and 7.5 mCi) per kg body weight, respectively. In the rat, 40% of the recovered radioactivity was exhaled as 14C-CO2, 70% of which was trapped during the 6-h exposure period. In contrast, only 6% was exhaled as 14C-CO2 by mice, 3% during the 6-h exposure and 97% in the 42 h following cessation of exposure. The formation of 14C-CO2 from [2,3-14C]-labeled butadiene indicated a ready biodegradability of butadiene. Radioactivity excreted in urine accounted for 42% of the recovered radioactivity from rats and 71% from mice. Small amounts of radioactivity were recovered in feces, exhaled volatiles and carcasses. Although there was a large measure of commonality, the exposure to butadiene also led to the formation of different metabolites in rats and mice. These metabolites were not found after administration of [4-14C]-1,2-epoxy-3-butene to animals by i.p. injection. The results show that the species differences in the metabolism of butadiene are not simply confined to the quantitative formation of epoxides, but also reflect a species-dependent selection of metabolic pathways. No metabolites other than those formed via an epoxide intermediate were identified in the urine of rats or mice after exposure to 14C-butadiene. These findings may have relevance for the prediction of butadiene toxicity and provide a basis for a revision of the existing physiologically based pharmacokinetic models.


Assuntos
Butadienos/metabolismo , Carcinógenos/metabolismo , Administração por Inalação , Animais , Autorradiografia , Butadienos/farmacocinética , Butadienos/urina , Carcinógenos/farmacocinética , Suscetibilidade a Doenças , Cromatografia Gasosa-Espectrometria de Massas , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie , Distribuição Tecidual
4.
Chem Res Toxicol ; 11(12): 1543-55, 1998 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9860500

RESUMO

Differences in the metabolism of 1,3-butadiene (Bd) in rats and mice may account for the observed species difference in carcinogenicity. Previous studies of the metabolic fate of Bd have identified epoxide formation as a key metabolic transformation which gives 1, 2-epoxy-3-butene (BMO), although some evidence of aldehyde metabolites is reported. In this study, male Sprague-Dawley rats and male B6C3F1 mice received single doses of [4-14C]BMO at 1, 5, 20, and 50 mg/kg of body weight (0.014, 0.071, 0.286, and 0.714 mmol/kg of body weight). Analysis of urinary metabolites indicated that both species preferentially metabolize BMO by direct reaction with GSH when given by ip administration. The excretion of (R)-2-(N-acetyl-L-cystein-S-yl)-1-hydroxybut-3-ene (IIa), 1-(N-acetyl-L-cystein-S-yl)-2-(S)-hydroxybut-3-ene (IIb), 1-(N-acetyl-L-cystein-S-yl)-2-(R)-hydroxybut-3-ene (IIc), and (S)-2-(N-acetyl-L-cystein-S-yl)-1-hydroxybut-3-ene (IId) accounted for 48-64% of urinary radioactivity in rats and 46-54% in mice. The metabolites originating from the R-stereoisomer of BMO (IIc and IId) predominated over those arising from the S-stereoisomer (IIa and IIb) in both species. IIc was formed preferentially in mice and IId in rats. The corresponding mercaptoacetic acids, S-(1-hydroxybut-3-en-2-yl)mercaptoacetic acid (IIf) and S-(2-hydroxybut-3-en-1-yl)mercaptoacetic acid (IIg), were identified only in mouse urine (ca. 20% of the recovered radioactivity). 4-(N-Acetyl-L-cystein-S-yl)-1,2-dihydroxybutane (Ia), a metabolite derived from hydrolysis of BMO, accounted for 10-17% of the radioactivity in rat and 6-10% in mouse urine. 4-(N-Acetyl-L-cystein-S-yl)-2-hydroxybutanoic acid (Ib), 3-(N-acetyl-L-cystein-S-yl)propan-1-ol (Ic), and 3-(N-acetyl-L-cystein-S-yl)propanoic acid (Id), also derived from the hydrolysis of BMO, were only present in the rat. Metabolites of 1,2,3,4-diepoxybutane (DEB) were not detected after administration of BMO in rat or mouse urine. This study showed both quantitative and qualitative differences in the metabolism of BMO with varying doses and between species. The data aid in the safety evaluation of Bd and contribute to the interpretation of mathematical models developed for quantitative risk assessment and extrapolation of animals to humans.


Assuntos
Compostos de Epóxi/farmacocinética , Mutagênicos/farmacocinética , Animais , Biotransformação , Cromatografia Líquida de Alta Pressão , Compostos de Epóxi/urina , Fezes/química , Cromatografia Gasosa-Espectrometria de Massas , Masculino , Camundongos , Camundongos Endogâmicos , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
5.
Mutat Res ; 148(1-2): 1-12, 1985.
Artigo em Inglês | MEDLINE | ID: mdl-3881659

RESUMO

The DNA-repair host-mediated assay was further calibrated by determining the genotoxic activities of 4 methylating carcinogens, namely, dimethylnitrosamine (DMNA), 1,2-dimethylhydrazine (SDMH), methyl nitrosourea (MNU) and methyl methanesulphonate (MMS) in various organs of treated mice. The ranking of the animal-mediated genotoxic activities of the compounds was compared with that obtained in DNA repair assays performed in vitro. The differential survival of strain E. coli K-12/343/113 and of its DNA-repair-deficient derivatives recA, polA and uvrB/recA, served as a measure of genotoxic potency. In the in vitro assays and at equimolar exposure concentrations, MMS and MNU are the most active chemicals, followed by DMNA, which shows a slight genotoxic effect only in the presence of mouse liver homogenate; SDMH has no activity under these conditions. In the host-mediated assays, the order of genotoxic potency of the compounds was quite different: those carcinogens which require mammalian metabolic activation, namely, DMNA and SDMH, show strong effects in liver and blood, a lesser effect in the lungs and kidneys and the least effect in the spleen. The activity of MNU, a directly acting compound, is similar in all organs investigated, but it is clearly lower than that of DMNA and SDMH. MMS, also a directly acting carcinogen, causes some (barely significant) effect at the highest dose tested. A similar order of potency was observed when the compounds were tested in intrasanguineous host-mediated assays with gene mutation as an endpoint. DMNA and SDMH induce comparable frequencies of L-valine-resistant mutants in E. coli K-12/343/113 recovered from liver and spleen of treated mice, the effect in the liver being the strongest. MNU is mutagenic only at a higher dose, while MMS shows no effect. The results are discussed with respect to the literature data on organ-specific DNA adduct formation induced by the compounds. It is concluded that qualitatively there is a good correlation between the degree of genotoxic activity found in the DNA repair host-mediated assay and DNA adduct formation in the animal's own cells. This is exemplified by the finding that the relative order of genotoxic activity of the 4 methylating agents in bacteria recovered from various organs (DMNA approximately equal to SDMH greater than MNU greater than MMS) is reflected by the same order of magnitude in DNA alkylation in corresponding mammalian organs. Quantitatively, the indirectly acting agents DMNA and SDMH seem to induce fewer genotoxic effects in bacteria present in the liver than would be expected on the basis of DNA-adduct formation data.


Assuntos
Alquilantes/toxicidade , Reparo do DNA , Testes de Mutagenicidade/métodos , Animais , Carcinógenos/toxicidade , Reparo do DNA/efeitos dos fármacos , Escherichia coli/genética , Rim/efeitos dos fármacos , Rim/enzimologia , Fígado/efeitos dos fármacos , Fígado/enzimologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA