Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; : 124118, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38761880

RESUMO

Rivers are main conduits for the delivery of plastics to the sea, while also functioning as reservoirs for plastic retention. In tropical regions, rivers are exposed to both high levels of plastic pollution and invasion of water hyacinths. This aquatic plant forms dense patches at the river surface that drift due to winds and currents. Recent work suggests that water hyacinths play a crucial role in influencing plastic transport, by efficiently trapping the majority of surface plastic within their patches. However, a comprehensive understanding of the interaction between water hyacinths and plastics is still lacking. We hypothesize that the properties relevant to plastic transport change due to their trapping in water hyacinth patches. In particular, the length scale, defined as the characteristic size of the transported material, is a key property in understanding how materials move within rivers. Here, we show that water hyacinth patches trap on average 54%-77% of all observed surface plastics at the measurement site (Saigon river, Vietnam). Both temporally and spatially, we found that plastic and water hyacinth presence co-occur. The formation of plastic-plant aggregates carries significant implications for both clean-up and monitoring purposes, as these aggregates can be detected from space and need to be jointly removed. In addition, the length scale of trapped plastics (4.0 m) was found to be forty times larger than that of open water plastics (0.1 m). The implications of this increased length scale for plastic transport dynamics are yet to be fully understood, calling for further investigation into travel distances and trajectories. The effects of plastic trapping likely extend to other key properties of plastic-plant aggregates, such as effective buoyancy and mass. Given the prevalence of plant invasion and plastic pollution in rivers worldwide, this research offers valuable insights into the complex environmental challenges faced by numerous rivers.

2.
Sci Total Environ ; 934: 173294, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38763189

RESUMO

Plastic pollution in the natural environment poses a growing threat to ecosystems and human health, prompting urgent needs for monitoring, prevention and clean-up measures, and new policies. To effectively prioritize resource allocation and mitigation strategies, it is key to identify and define plastic hotspots. UNEP's draft global agreement on plastic pollution mandates prioritizing hotspots, suggesting a potential need for a defined term. Yet, the delineation of hotspots varies considerably across plastic pollution studies, and a definition is often lacking or inconsistent without a clear purpose and boundaries of the term. In this paper, we applied four common definitions of hotspot locations to plastic pollution datasets ranging from urban areas to a global scale. Our findings reveal that these hotspot definitions encompass between 0.8 % to 93.3 % of the total plastic pollution, covering <0.1 % to 50.3 % of the total locations. Given this wide range of results and the possibility of temporal inconsistency in hotspots, we emphasize the need for fit-for-purpose criteria and a unified approach to defining plastic hotspots. Therefore, we designed a step-wise framework to define hotspots by determining the purpose, units, spatial scale, temporal scale, and threshold values. Incorporating these steps in research and policymaking yields a harmonized definition of hotspots, facilitating the development of effective plastic pollution prevention and reduction measures.

3.
J Hazard Mater ; 472: 134571, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38743976

RESUMO

Research on riverine microplastics has gradually increased, highlighting an area for further exploration: the lack of extensive, large-scale regional variations analysis due to methodological and spatiotemporal limitations. Herein, we constructed and applied a comprehensive framework for synthesizing and analyzing literature data on riverine microplastics to enable comparative research on the regional variations on a large scale. Research results showed that in 76 rivers primarily located in Asia, Europe, and North America, the microplastic abundance of surface water in Asian rivers was three times higher than that in Euro-America rivers, while sediment in Euro-American rivers was five times more microplastics than Asia rivers, indicating significant regional variations (p < 0.001). Additionally, based on the income levels of countries, rivers in lower-middle and upper-middle income countries had significantly (p < 0.001) higher abundance of microplastics in surface water compared to high-income countries, while the opposite was true for sediment. This phenomenon was preliminarily attributed to varying levels of urbanization across countries. Our proposed framework for synthesizing and analyzing microplastic literature data provides a holistic understanding of microplastic disparities in the environment, and can facilitate broader discussions on management and mitigation strategies.

4.
Environ Pollut ; 345: 123490, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38336137

RESUMO

The transport of floating macroplastics (>2.5 cm) can be impacted by variations in hydrometeorological forcing. Several studies have demonstrated that river discharge, wind, and tides can either accelerate or impede the downstream travel path of plastic. However, there remains a substantial gap in our understanding of the impact of river geomorphological complexity on this process. In this context, the role that river bifurcations play in driving plastic dynamics under different hydrometeorological conditions is largely unexplored. Here, we show that specific plastic item categories react differently to the transport drivers, and bifurcation areas can function both as a retention and release site of plastic litter. We found that hard polyolefin appears to be the most responsive plastic to changes in flow discharge (ρ≈0.40, p≈0.01). Absolute wind velocity magnitude does not correlate to plastic transport. We explored correlations of the various plastic items types with wind vector components in all directions. Multilayer plastics correlated highest to the wind vector component that is most effective in driving plastics from an urban area to the river (ρ≈0.57, p≈0.0001). On a monthly scale, the bifurcation area retained up to 50% of the incoming upstream plastic flux. At other times, an additional 30% was released in the same area. Our results demonstrate how bifurcations distribute different plastic items types downstream under varied hydrometeorological conditions. These yields underscore the importance of assessing floating plastic transport in specific plastic item categories and taking river geomorphological complexity into account.


Assuntos
Monitoramento Ambiental , Plásticos , Plásticos/análise , Monitoramento Ambiental/métodos , Rios , Vento , Resíduos/análise
5.
Sci Rep ; 14(1): 3898, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365993

RESUMO

Wind and rain are considered main drivers for mobilization and transport of macroplastics on land, yet there is a lack of empirical data that quantifies this. We present lab experiment results on land-based macroplastic mobilization and transport. We placed four types of macroplastics on terrains with varying surface roughness and slope angles, and exposed them to changing wind speeds and rain intensities. In general, we find that the mobilization probability and transport velocity of macroplastics strongly depend on the combination of the terrain characteristics and material properties. At Beaufort 3, 100% of the plastic bags were mobilized, whereas for the other plastic types less than 50% were mobilized. We found 1.4 (grass) to 5 times (paved surface) higher mobilization probabilities on land than assumed by existing plastic transport models. Macroplastic transport velocities were positively correlated with wind speed, but not with rain intensity. This suggests that macroplastics are not transported on land by rain unless surface runoff develops that can bring the macroplastics afloat. Macroplastic transport velocities were, driven by wind, 1.9 and, driven by rain, 4.9 times faster on paved surfaces than on grass. This study enhances our understanding of land-based macroplastic transport and provides an empirical basis for models.

6.
Mar Pollut Bull ; 198: 115813, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38016204

RESUMO

Catchment-scale plastic pollution assessments provide insights in its sources, sinks, and pathways. We present an approach to quantify macroplastic transport and density across the Odaw catchment, Ghana. We divided the catchment into the non-urban riverine, urban riverine, and urban tidal zones. Macroplastic transport and density on riverbanks and land were monitored at ten locations in December 2021. The urban riverine zone had the highest transport, and the urban tidal zone had the highest riverbank and land macroplastic density. Water sachets, soft fragments, and foam fragments were the most abundant items. Our approach aims to be transferable to other catchments globally.


Assuntos
Monitoramento Ambiental , Rios , Gana , Poluição Ambiental/análise
7.
Mar Pollut Bull ; 196: 115503, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37788515

RESUMO

Plastics in rivers and lakes have direct local impact, and may also reach the world's oceans. Monitoring river plastic pollution is therefore key to quantify, understand and reduce plastics in all aquatic ecosystems. The lack of harmonization between ongoing monitoring efforts compromises the direct comparison and combination of available data. The United Nations Environment Programme (UNEP) launched guidelines on freshwater plastic monitoring, to provide a starting point for practitioners and scientists towards harmonized data collection, analysis, and reporting. We developed a five-step workflow to support to design effective plastic monitoring strategies. The workflow was applied to three rivers (Rhine, Mekong and Odaw) across relevant gradients, including geography, hydrology, and plastic pollution levels. We show that despite the simplicity of the selected methods and the limited duration of the data collection, our harmonized approach provides crucial insights in the state of plastic pollution in very different river basins globally.


Assuntos
Rios , Poluentes Químicos da Água , Plásticos/análise , Resíduos/análise , Ecossistema , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Lagos/análise
8.
Mar Pollut Bull ; 195: 115521, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37714078

RESUMO

Multirotor drones can be efficiently used to monitor macro-litter in coastal and riverine environments. Litter on beaches, dunes and riverbanks, along with floating litter on coastal and river waters, can be spotted and mapped from aerial drone images. Items detection and classification are prone to image resolution, which is expressed in terms of Ground Sampling Distance (GSD). The GSD is determined by drone flight altitude and camera properties. This paper investigates what is a suitable GSD value for litter survey. Drone flight altitude and camera setup should be chosen to obtain a GSD between 0.5 cm/px and 1.25 cm/px. Within this range, the lowest GSD allows litter categorization and classification, whereas the highest value should be adopted for a coarser litter census. In the vision of drawing up a global protocol for drone-based litter surveys, this work sets the ground for homogenizing data collection and litter assessments.

9.
Environ Int ; 180: 108186, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37716340

RESUMO

The process of macroplastic (>0.5 cm) fragmentation results in the production of smaller plastic particles, which threaten biota and human health and are difficult to remove from the environment. The global coverage and long retention times of macroplastic waste in fluvial systems (ranging from years to centuries) create long-lasting and widespread potential for its fragmentation and the production of secondary micro- and nanoplastics. However, the pathways and rates of this process are mostly unknown and existing experimental data not fully informative, which constitutes a fundamental knowledge gap in our understanding of macroplastic fate in rivers and the transfer of produced microparticles throughout the environment. Here we present a conceptual framework which identifies two types of riverine macroplastic fragmentation controls: intrinsic (resulting from plastic item properties) and extrinsic (resulting from river characteristics and climate). First, based on the existing literature, we identify the intrinsic properties of macroplastic items that make them particularly prone to fragmentation (e.g., film shape, low polymer resistance, previous weathering). Second, we formulate a conceptual model showing how extrinsic controls can modulate the intensity of macroplastic fragmentation in perennial and intermittent rivers. Using this model, we hypothesize that the inundated parts of perennial river channels-as specific zones exposed to the constant transfer of water and sediments-provide particular conditions that accelerate the physical fragmentation of macroplastics resulting from their mechanical interactions with water, sediments, and riverbeds. The unvegetated areas in the non-inundated parts of perennial river channels provide conditions for biochemical fragmentation via photo-oxidation. In intermittent rivers, the whole channel zone is hypothesized to favor both the physical and biochemical fragmentation of macroplastics, with the dominance of the mechanical type during the periods with water flow. Our conceptualization aims to support future experimental and modelling works quantifying plastic footprint of different macroplastic waste in different types of rivers.

10.
Sci Total Environ ; 888: 164058, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37178849

RESUMO

Plastic waste poses numerous risks to mountain river ecosystems due to their high biodiversity and specific physical characteristics. Here, we provide a baseline assessment for future evaluation of such risks in the Carpathians, one of the most biodiverse mountain ranges in East-Central Europe. We used high-resolution river network and mismanaged plastic waste (MPW) databases to map MPW along the 175,675 km of watercourses draining this ecoregion. We explored MPW levels as a function of altitude, stream order, river basin, country, and type of nature conservation in a given area. The Carpathian watercourses below 750 m a.s.l. (142,282 km, 81 % of the stream lengths) are identified as significantly affected by MPW. Most MPW hotspots (>409.7 t/yr/km2) occur along rivers in Romania (6568 km; 56.6 % of all hotspot lengths), Hungary (2679 km; 23.1 %), and Ukraine (1914 km; 16.5 %). The majority of the river sections flowing through the areas with negligible MPW (< 1 t/yr/km2) occur in Romania (31,855 km; 47.8 %), Slovakia (14,577 km; 21.9 %), and Ukraine (7492; 11.2 %). The Carpathian watercourses flowing through the areas protected at national level (3988 km; 2.3 % of all watercourses studied) have significantly higher MPW values (median = 7.7 t/yr/km2) than those protected at regional (51,800 km; 29.5 %) (median MPW = 1.25 t/yrkm2) and international levels (66 km; 0.04 %) (median MPW = 0 t/yr/km2). Rivers within the Black Sea basin (88.3 % of all studied watercourses) have significantly higher MPW (median = 5.1 t/yr/km2, 90th percentile = 381.1 t/yr/km2) than those within the Baltic Sea basin (median = 6.5 t/yr/km2, 90th percentile = 84.8 t/yr/km2) (11.1 % of all studied watercourses). Our study indicates the locations and extent of riverine MPW hotspots in the Carpathian Ecoregion, which can support future collaborations between scientists, engineers, governments, and citizens to better manage plastic pollution in this region.

11.
Sci Total Environ ; 865: 161224, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36584957

RESUMO

Mountain rivers are typically seen as relatively pristine ecosystems, supporting numerous goods (e.g., water resources) for human populations living not only in the mountain regions but also downstream from them. However recent evidence suggests that mountain river valleys in populated areas can be substantially polluted by macroplastic (plastic item >25 mm). It is unknown how distinct characteristics of mountain rivers modulate macroplastic routes through them, which makes planning effective mitigation strategies difficult. To stimulate future works on this gap, we present a conceptual model of macroplastic transport pathways through mountain river. Based on this model, we formulate four hypotheses on macroplastic input, transport and mechanical degradation in mountain rivers. Then, we propose designs of field experiments that allow each hypothesis to be tested. We hypothesize that some natural characteristics of mountain river catchments can accelerate the input of improperly disposed macroplastic waste from the slope to the river. Further, we hypothesize that specific hydromorphological characteristics of mountain rivers (e.g., high flow velocity) accelerate the downstream transport rate of macroplastic and together with the presence of shallow water and coarse bed sediments it can accelerate mechanical degradation of macroplastic in river channels, accelerating secondary microplastic production. The above suggests that mountain rivers in populated areas can act as microplastic factories, which are able to produce more microplastic from the same amount of macroplastic waste inputted into them (in comparison to lowland rivers that have a different hydromorphology). The produced risks can not only affect mountain rivers but can also be transported downstream. The challenge for the future is how to manage the hypothesized risks, especially in mountain areas particularly exposed to plastic pollution due to waste management deficiencies, high tourism pressure, poor ecological awareness of the population and lack of uniform regional and global regulations for the problem.

12.
Environ Sci Technol ; 55(8): 4932-4942, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33792293

RESUMO

Anthropogenic macrolitter (>0.5 cm) in rivers is of increasing concern. It has been found to have an adverse effect on riverine ecosystem health, and the livelihoods of the communities depending on and living next to these ecosystems. Yet, little is known on how macrolitter reaches and propagates through these ecosystems. A better understanding of macrolitter transport dynamics is key in developing effective reduction, preventive, and cleanup measures. In this study, we analyzed a novel dataset of citizen science riverbank macrolitter observations in the Dutch Rhine-Meuse delta, spanning two years of observations on over 200 unique locations, with the litter categorized into 111 item categories according to the river-OSPAR protocol. With the use of regression models, we analyzed how much of the variation in the observations can be explained by hydrometeorology, observer bias, and location, and how much can instead be explained by temporal trends and seasonality. The results show that observation bias is very low, with only a few exceptions, in contrast with the total variance in the observations. Additionally, the models show that precipitation, wind speed, and river flow are all important explanatory variables in litter abundance variability. However, the total number of items that can significantly be explained by the regression models is 19% and only six item categories display an R2 above 0.4. This suggests that a very substantial part of the variability in macrolitter abundance is a product of chance, caused by unaccounted (and often fundamentally unknowable) stochastic processes, rather than being driven by the deterministic processes studied in our analyses. The implications of these findings are that for modeling macrolitter movement through rivers effectively, a probabilistic approach and a strong uncertainty analysis are fundamental. In turn, point observations of macrolitter need to be planned to capture short-term variability.


Assuntos
Ecossistema , Monitoramento Ambiental , Rios , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...