Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neural Comput ; : 1-46, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38776965

RESUMO

In computational neuroscience, multicompartment models are among the most biophysically realistic representations of single neurons. Constructing such models usually involves the use of the patch-clamp technique to record somatic voltage signals under different experimental conditions. The experimental data are then used to fit the many parameters of the model. While patching of the soma is currently the gold-standard approach to build multicompartment models, several studies have also evidenced a richness of dynamics in dendritic and axonal sections. Recording from the soma alone makes it hard to observe and correctly parameterize the activity of nonsomatic compartments. In order to provide a richer set of data as input to multicompartment models, we here investigate the combination of somatic patch-clamp recordings with recordings of high-density microelectrode arrays (HD-MEAs). HD-MEAs enable the observation of extracellular potentials and neural activity of neuronal compartments at subcellular resolution. In this work, we introduce a novel framework to combine patch-clamp and HD-MEA data to construct multicompartment models. We first validate our method on a ground-truth model with known parameters and show that the use of features extracted from extracellular signals, in addition to intracellular ones, yields models enabling better fits than using intracellular features alone. We also demonstrate our procedure using experimental data by constructing cell models from in vitro cell cultures. The proposed multimodal fitting procedure has the potential to augment the modeling efforts of the computational neuroscience community and provide the field with neuronal models that are more realistic and can be better validated.

2.
Patterns (N Y) ; 4(11): 100855, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38035193

RESUMO

Detailed single-neuron modeling is widely used to study neuronal functions. While cellular and functional diversity across the mammalian cortex is vast, most of the available computational tools focus on a limited set of specific features characteristic of a single neuron. Here, we present a generalized automated workflow for the creation of robust electrical models and illustrate its performance by building cell models for the rat somatosensory cortex. Each model is based on a 3D morphological reconstruction and a set of ionic mechanisms. We use an evolutionary algorithm to optimize neuronal parameters to match the electrophysiological features extracted from experimental data. Then we validate the optimized models against additional stimuli and assess their generalizability on a population of similar morphologies. Compared to the state-of-the-art canonical models, our models show 5-fold improved generalizability. This versatile approach can be used to build robust models of any neuronal type.

3.
iScience ; 26(11): 108222, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37953946

RESUMO

Variability, which is known to be a universal feature among biological units such as neuronal cells, holds significant importance, as, for example, it enables a robust encoding of a high volume of information in neuronal circuits and prevents hypersynchronizations. While most computational studies on electrophysiological variability in neuronal circuits were done with single-compartment neuron models, we instead focus on the variability of detailed biophysical models of neuron multi-compartmental morphologies. We leverage a Markov chain Monte Carlo method to generate populations of electrical models reproducing the variability of experimental recordings while being compatible with a set of morphologies to faithfully represent specifi morpho-electrical type. We demonstrate our approach on layer 5 pyramidal cells and study the morpho-electrical variability and in particular, find that morphological variability alone is insufficient to reproduce electrical variability. Overall, this approach provides a strong statistical basis to create detailed models of neurons with controlled variability.

4.
Nat Commun ; 14(1): 2344, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095130

RESUMO

The brain consists of many cell classes yet in vivo electrophysiology recordings are typically unable to identify and monitor their activity in the behaving animal. Here, we employed a systematic approach to link cellular, multi-modal in vitro properties from experiments with in vivo recorded units via computational modeling and optotagging experiments. We found two one-channel and six multi-channel clusters in mouse visual cortex with distinct in vivo properties in terms of activity, cortical depth, and behavior. We used biophysical models to map the two one- and the six multi-channel clusters to specific in vitro classes with unique morphology, excitability and conductance properties that explain their distinct extracellular signatures and functional characteristics. These concepts were tested in ground-truth optotagging experiments with two inhibitory classes unveiling distinct in vivo properties. This multi-modal approach presents a powerful way to separate in vivo clusters and infer their cellular properties from first principles.


Assuntos
Encéfalo , Córtex Visual Primário , Camundongos , Animais , Encéfalo/fisiologia , Biofísica
5.
Cell Rep ; 42(3): 112200, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36867532

RESUMO

Thalamoreticular circuitry plays a key role in arousal, attention, cognition, and sleep spindles, and is linked to several brain disorders. A detailed computational model of mouse somatosensory thalamus and thalamic reticular nucleus has been developed to capture the properties of over 14,000 neurons connected by 6 million synapses. The model recreates the biological connectivity of these neurons, and simulations of the model reproduce multiple experimental findings in different brain states. The model shows that inhibitory rebound produces frequency-selective enhancement of thalamic responses during wakefulness. We find that thalamic interactions are responsible for the characteristic waxing and waning of spindle oscillations. In addition, we find that changes in thalamic excitability control spindle frequency and their incidence. The model is made openly available to provide a new tool for studying the function and dysfunction of the thalamoreticular circuitry in various brain states.


Assuntos
Tálamo , Vigília , Camundongos , Animais , Tálamo/fisiologia , Sono/fisiologia , Núcleos Talâmicos/fisiologia , Percepção , Córtex Cerebral/fisiologia
7.
Cell Rep ; 40(6): 111176, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35947954

RESUMO

Which cell types constitute brain circuits is a fundamental question, but establishing the correspondence across cellular data modalities is challenging. Bio-realistic models allow probing cause-and-effect and linking seemingly disparate modalities. Here, we introduce a computational optimization workflow to generate 9,200 single-neuron models with active conductances. These models are based on 230 in vitro electrophysiological experiments followed by morphological reconstruction from the mouse visual cortex. We show that, in contrast to current belief, the generated models are robust representations of individual experiments and cortical cell types as defined via cellular electrophysiology or transcriptomics. Next, we show that differences in specific conductances predicted from the models reflect differences in gene expression supported by single-cell transcriptomics. The differences in model conductances, in turn, explain electrophysiological differences observed between the cortical subclasses. Our computational effort reconciles single-cell modalities that define cell types and enables causal relationships to be examined.


Assuntos
Transcriptoma , Córtex Visual , Animais , Fenômenos Eletrofisiológicos , Eletrofisiologia , Camundongos , Modelos Neurológicos , Neurônios/fisiologia , Transcriptoma/genética , Córtex Visual/fisiologia
8.
Nat Commun ; 13(1): 3038, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35650191

RESUMO

Pyramidal cells (PCs) form the backbone of the layered structure of the neocortex, and plasticity of their synapses is thought to underlie learning in the brain. However, such long-term synaptic changes have been experimentally characterized between only a few types of PCs, posing a significant barrier for studying neocortical learning mechanisms. Here we introduce a model of synaptic plasticity based on data-constrained postsynaptic calcium dynamics, and show in a neocortical microcircuit model that a single parameter set is sufficient to unify the available experimental findings on long-term potentiation (LTP) and long-term depression (LTD) of PC connections. In particular, we find that the diverse plasticity outcomes across the different PC types can be explained by cell-type-specific synaptic physiology, cell morphology and innervation patterns, without requiring type-specific plasticity. Generalizing the model to in vivo extracellular calcium concentrations, we predict qualitatively different plasticity dynamics from those observed in vitro. This work provides a first comprehensive null model for LTP/LTD between neocortical PC types in vivo, and an open framework for further developing models of cortical synaptic plasticity.


Assuntos
Potenciação de Longa Duração , Neocórtex , Cálcio/metabolismo , Depressão , Potenciação de Longa Duração/fisiologia , Plasticidade Neuronal/fisiologia
9.
Cell Rep ; 39(1): 110586, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35385736

RESUMO

Neuronal morphologies provide the foundation for the electrical behavior of neurons, the connectomes they form, and the dynamical properties of the brain. Comprehensive neuron models are essential for defining cell types, discerning their functional roles, and investigating brain-disease-related dendritic alterations. However, a lack of understanding of the principles underlying neuron morphologies has hindered attempts to computationally synthesize morphologies for decades. We introduce a synthesis algorithm based on a topological descriptor of neurons, which enables the rapid digital reconstruction of entire brain regions from few reference cells. This topology-guided synthesis generates dendrites that are statistically similar to biological reconstructions in terms of morpho-electrical and connectivity properties and offers a significant opportunity to investigate the links between neuronal morphology and brain function across different spatiotemporal scales. Synthesized cortical networks based on structurally altered dendrites associated with diverse brain pathologies revealed principles linking branching properties to the structure of large-scale networks.


Assuntos
Conectoma , Dendritos , Algoritmos , Encéfalo , Dendritos/fisiologia , Neurônios
10.
Front Big Data ; 5: 789962, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402905

RESUMO

Many scientific systems are studied using computer codes that simulate the phenomena of interest. Computer simulation enables scientists to study a broad range of possible conditions, generating large quantities of data at a faster rate than the laboratory. Computer models are widespread in neuroscience, where they are used to mimic brain function at different levels. These models offer a variety of new possibilities for the neuroscientist, but also numerous challenges, such as: where to sample the input space for the simulator, how to make sense of the data that is generated, and how to estimate unknown parameters in the model. Statistical emulation can be a valuable complement to simulator-based research. Emulators are able to mimic the simulator, often with a much smaller computational burden and they are especially valuable for parameter estimation, which may require many simulator evaluations. This work compares different statistical models that address these challenges, and applies them to simulations of neocortical L2/3 large basket cells, created and run with the NEURON simulator in the context of the European Human Brain Project. The novelty of our approach is the use of fast empirical emulators, which have the ability to accelerate the optimization process for the simulator and to identify which inputs (in this case, different membrane ion channels) are most influential in affecting simulated features. These contributions are complementary, as knowledge of the important features can further improve the optimization process. Subsequent research, conducted after the process is completed, will gain efficiency by focusing on these inputs.

11.
PLoS Comput Biol ; 17(1): e1008114, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33513130

RESUMO

Anatomically and biophysically detailed data-driven neuronal models have become widely used tools for understanding and predicting the behavior and function of neurons. Due to the increasing availability of experimental data from anatomical and electrophysiological measurements as well as the growing number of computational and software tools that enable accurate neuronal modeling, there are now a large number of different models of many cell types available in the literature. These models were usually built to capture a few important or interesting properties of the given neuron type, and it is often unknown how they would behave outside their original context. In addition, there is currently no simple way of quantitatively comparing different models regarding how closely they match specific experimental observations. This limits the evaluation, re-use and further development of the existing models. Further, the development of new models could also be significantly facilitated by the ability to rapidly test the behavior of model candidates against the relevant collection of experimental data. We address these problems for the representative case of the CA1 pyramidal cell of the rat hippocampus by developing an open-source Python test suite, which makes it possible to automatically and systematically test multiple properties of models by making quantitative comparisons between the models and electrophysiological data. The tests cover various aspects of somatic behavior, and signal propagation and integration in apical dendrites. To demonstrate the utility of our approach, we applied our tests to compare the behavior of several different rat hippocampal CA1 pyramidal cell models from the ModelDB database against electrophysiological data available in the literature, and evaluated how well these models match experimental observations in different domains. We also show how we employed the test suite to aid the development of models within the European Human Brain Project (HBP), and describe the integration of the tests into the validation framework developed in the HBP, with the aim of facilitating more reproducible and transparent model building in the neuroscience community.


Assuntos
Região CA1 Hipocampal , Fenômenos Eletrofisiológicos/fisiologia , Eletrofisiologia/métodos , Modelos Neurológicos , Software , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/fisiologia , Biologia Computacional , Dendritos/fisiologia , Células Piramidais/citologia , Células Piramidais/fisiologia , Ratos
12.
PLoS Comput Biol ; 16(2): e1007696, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32092054

RESUMO

Increasing availability of comprehensive experimental datasets and of high-performance computing resources are driving rapid growth in scale, complexity, and biological realism of computational models in neuroscience. To support construction and simulation, as well as sharing of such large-scale models, a broadly applicable, flexible, and high-performance data format is necessary. To address this need, we have developed the Scalable Open Network Architecture TemplAte (SONATA) data format. It is designed for memory and computational efficiency and works across multiple platforms. The format represents neuronal circuits and simulation inputs and outputs via standardized files and provides much flexibility for adding new conventions or extensions. SONATA is used in multiple modeling and visualization tools, and we also provide reference Application Programming Interfaces and model examples to catalyze further adoption. SONATA format is free and open for the community to use and build upon with the goal of enabling efficient model building, sharing, and reproducibility.


Assuntos
Encéfalo/fisiologia , Biologia Computacional/métodos , Neurociências , Algoritmos , Mapeamento Encefálico , Simulação por Computador , Bases de Dados Factuais , Humanos , Modelos Neurológicos , Neurônios/fisiologia , Linguagens de Programação , Reprodutibilidade dos Testes , Software
13.
Neuron ; 103(3): 395-411.e5, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31201122

RESUMO

Computational models are powerful tools for exploring the properties of complex biological systems. In neuroscience, data-driven models of neural circuits that span multiple scales are increasingly being used to understand brain function in health and disease. But their adoption and reuse has been limited by the specialist knowledge required to evaluate and use them. To address this, we have developed Open Source Brain, a platform for sharing, viewing, analyzing, and simulating standardized models from different brain regions and species. Model structure and parameters can be automatically visualized and their dynamical properties explored through browser-based simulations. Infrastructure and tools for collaborative interaction, development, and testing are also provided. We demonstrate how existing components can be reused by constructing new models of inhibition-stabilized cortical networks that match recent experimental results. These features of Open Source Brain improve the accessibility, transparency, and reproducibility of models and facilitate their reuse by the wider community.


Assuntos
Encéfalo/fisiologia , Biologia Computacional/normas , Simulação por Computador , Modelos Neurológicos , Neurônios/fisiologia , Encéfalo/citologia , Biologia Computacional/métodos , Humanos , Internet , Redes Neurais de Computação , Sistemas On-Line
14.
PLoS Comput Biol ; 15(5): e1006753, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31095552

RESUMO

Somatosensory thalamocortical (TC) neurons from the ventrobasal (VB) thalamus are central components in the flow of sensory information between the periphery and the cerebral cortex, and participate in the dynamic regulation of thalamocortical states including wakefulness and sleep. This property is reflected at the cellular level by the ability to generate action potentials in two distinct firing modes, called tonic firing and low-threshold bursting. Although the general properties of TC neurons are known, we still lack a detailed characterization of their morphological and electrical properties in the VB thalamus. The aim of this study was to build biophysically-detailed models of VB TC neurons explicitly constrained with experimental data from rats. We recorded the electrical activity of VB neurons (N = 49) and reconstructed morphologies in 3D (N = 50) by applying standardized protocols. After identifying distinct electrical types, we used a multi-objective optimization to fit single neuron electrical models (e-models), which yielded multiple solutions consistent with the experimental data. The models were tested for generalization using electrical stimuli and neuron morphologies not used during fitting. A local sensitivity analysis revealed that the e-models are robust to small parameter changes and that all the parameters were constrained by one or more features. The e-models, when tested in combination with different morphologies, showed that the electrical behavior is substantially preserved when changing dendritic structure and that the e-models were not overfit to a specific morphology. The models and their analysis show that automatic parameter search can be applied to capture complex firing behavior, such as co-existence of tonic firing and low-threshold bursting over a wide range of parameter sets and in combination with different neuron morphologies.


Assuntos
Neurônios/fisiologia , Córtex Somatossensorial/fisiologia , Tálamo/fisiologia , Potenciais de Ação/fisiologia , Animais , Fenômenos Biofísicos/fisiologia , Biofísica , Córtex Cerebral/fisiologia , Dendritos , Feminino , Masculino , Modelos Neurológicos , Ratos , Ratos Wistar , Sono/fisiologia , Núcleos Ventrais do Tálamo/fisiologia , Vigília/fisiologia
15.
PLoS Comput Biol ; 14(9): e1006423, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30222740

RESUMO

Every neuron is part of a network, exerting its function by transforming multiple spatiotemporal synaptic input patterns into a single spiking output. This function is specified by the particular shape and passive electrical properties of the neuronal membrane, and the composition and spatial distribution of ion channels across its processes. For a variety of physiological or pathological reasons, the intrinsic input/output function may change during a neuron's lifetime. This process results in high variability in the peak specific conductance of ion channels in individual neurons. The mechanisms responsible for this variability are not well understood, although there are clear indications from experiments and modeling that degeneracy and correlation among multiple channels may be involved. Here, we studied this issue in biophysical models of hippocampal CA1 pyramidal neurons and interneurons. Using a unified data-driven simulation workflow and starting from a set of experimental recordings and morphological reconstructions obtained from rats, we built and analyzed several ensembles of morphologically and biophysically accurate single cell models with intrinsic electrophysiological properties consistent with experimental findings. The results suggest that the set of conductances expressed in any given hippocampal neuron may be considered as belonging to two groups: one subset is responsible for the major characteristics of the firing behavior in each population and the other is responsible for a robust degeneracy. Analysis of the model neurons suggests several experimentally testable predictions related to the combination and relative proportion of the different conductances that should be expressed on the membrane of different types of neurons for them to fulfill their role in the hippocampus circuitry.


Assuntos
Hipocampo/fisiologia , Interneurônios/fisiologia , Neurônios/fisiologia , Células Piramidais/fisiologia , Potenciais de Ação/fisiologia , Animais , Eletrofisiologia , Masculino , Modelos Neurológicos , Ratos , Ratos Sprague-Dawley , Transmissão Sináptica/fisiologia
16.
Front Cell Neurosci ; 11: 71, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28360841

RESUMO

In realistic neuronal modeling, once the ionic channel complement has been defined, the maximum ionic conductance (Gi-max) values need to be tuned in order to match the firing pattern revealed by electrophysiological recordings. Recently, selection/mutation genetic algorithms have been proposed to efficiently and automatically tune these parameters. Nonetheless, since similar firing patterns can be achieved through different combinations of Gi-max values, it is not clear how well these algorithms approximate the corresponding properties of real cells. Here we have evaluated the issue by exploiting a unique opportunity offered by the cerebellar granule cell (GrC), which is electrotonically compact and has therefore allowed the direct experimental measurement of ionic currents. Previous models were constructed using empirical tuning of Gi-max values to match the original data set. Here, by using repetitive discharge patterns as a template, the optimization procedure yielded models that closely approximated the experimental Gi-max values. These models, in addition to repetitive firing, captured additional features, including inward rectification, near-threshold oscillations, and resonance, which were not used as features. Thus, parameter optimization using genetic algorithms provided an efficient modeling strategy for reconstructing the biophysical properties of neurons and for the subsequent reconstruction of large-scale neuronal network models.

17.
Front Neuroinform ; 10: 17, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27375471

RESUMO

At many scales in neuroscience, appropriate mathematical models take the form of complex dynamical systems. Parameterizing such models to conform to the multitude of available experimental constraints is a global non-linear optimisation problem with a complex fitness landscape, requiring numerical techniques to find suitable approximate solutions. Stochastic optimisation approaches, such as evolutionary algorithms, have been shown to be effective, but often the setting up of such optimisations and the choice of a specific search algorithm and its parameters is non-trivial, requiring domain-specific expertise. Here we describe BluePyOpt, a Python package targeted at the broad neuroscience community to simplify this task. BluePyOpt is an extensible framework for data-driven model parameter optimisation that wraps and standardizes several existing open-source tools. It simplifies the task of creating and sharing these optimisations, and the associated techniques and knowledge. This is achieved by abstracting the optimisation and evaluation tasks into various reusable and flexible discrete elements according to established best-practices. Further, BluePyOpt provides methods for setting up both small- and large-scale optimisations on a variety of platforms, ranging from laptops to Linux clusters and cloud-based compute infrastructures. The versatility of the BluePyOpt framework is demonstrated by working through three representative neuroscience specific use cases.

18.
Cereb Cortex ; 26(8): 3655-3668, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27288316

RESUMO

In the neocortex, inhibitory interneurons of the same subtype are electrically coupled with each other via dendritic gap junctions (GJs). The impact of multiple GJs on the biophysical properties of interneurons and thus on their input processing is unclear. The present experimentally based theoretical study examined GJs in L2/3 large basket cells (L2/3 LBCs) with 3 goals in mind: (1) To evaluate the errors due to GJs in estimating the cable properties of individual L2/3 LBCs and suggest ways to correct these errors when modeling these cells and the networks they form; (2) to bracket the GJ conductance value (0.05-0.25 nS) and membrane resistivity (10 000-40 000 Ω cm(2)) of L2/3 LBCs; these estimates are tightly constrained by in vitro input resistance (131 ± 18.5 MΩ) and the coupling coefficient (1-3.5%) of these cells; and (3) to explore the functional implications of GJs, and show that GJs: (i) dynamically modulate the effective time window for synaptic integration; (ii) improve the axon's capability to encode rapid changes in synaptic inputs; and (iii) reduce the orientation selectivity, linearity index, and phase difference of L2/3 LBCs. Our study provides new insights into the role of GJs and calls for caution when using in vitro measurements for modeling electrically coupled neuronal networks.


Assuntos
Junções Comunicantes/fisiologia , Interneurônios/fisiologia , Neocórtex/fisiologia , Sinapses/fisiologia , Animais , Axônios/fisiologia , Simulação por Computador , Dendritos/fisiologia , Potenciais da Membrana/fisiologia , Modelos Neurológicos , Ratos
20.
Front Neuroinform ; 1: 1, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18974796

RESUMO

The increase in available computational power and the higher quality of experimental recordings have turned the tuning of neuron model parameters into a problem that can be solved by automatic global optimization algorithms. Neurofitter is a software tool that interfaces existing neural simulation software and sophisticated optimization algorithms with a new way to compute the error measure. This error measure represents how well a given parameter set is able to reproduce the experimental data. It is based on the phase-plane trajectory density method, which is insensitive to small phase differences between model and data. Neurofitter enables the effortless combination of many different time-dependent data traces into the error measure, allowing the neuroscientist to focus on what are the seminal properties of the model.We show results obtained by applying Neurofitter to a simple single compartmental model and a complex multi-compartmental Purkinje cell (PC) model. These examples show that the method is able to solve a variety of tuning problems and demonstrate details of its practical application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...