Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem C Nanomater Interfaces ; 127(43): 21387-21398, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37937158

RESUMO

Nanoscale forms of molybdenum trioxide have found widespread use in optoelectronic, sensing, and battery applications. Here, we investigate the thermal evolution of micrometer-sized molybdenum trioxide particles during in situ heating in vacuum using transmission electron microscopy and observed drastic structural and chemical changes that are strongly dependent on the heating rate. Rapid heating (flash heating) of MoO3 particles to a temperature of 600 °C resulted in large-scale formation of MoO2(001) nanosheets that were formed in a wide area around the reducing MoO3 particles, within a few minutes of time frame. In contrast, when heated more gently, the initially single-crystal MoO3 particles were reduced into hollow nanostructures with polycrystalline MoO2 shells. Using density functional theory calculations employing the DFT-D3 functional, the surface energy of MoO3(010) was calculated to be 0.187 J m-2, and the activation energy for exfoliation of the van der Waals bonded MoO3 (010) layers was calculated to be 0.478 J m-2. Ab initio molecular dynamics simulations show strong fluctuations in the distance between the (010) layers, where thermal vibrations lead to additional separations of up to 1.8 Å at 600 °C. This study shows efficient pathways for the generation of either MoO2 nanosheets or hollow MoO2 nanostructures with very high effective surface areas beneficial for applications.

2.
Nanomaterials (Basel) ; 12(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36079936

RESUMO

New facile and controllable approaches to fabricating metal chalcogenide thin films with adjustable properties can significantly expand the scope of these materials in numerous optoelectronic and photovoltaic devices. Most traditional and especially wet-chemical synthetic pathways suffer from a sluggish ability to regulate the composition and have difficulty achieving the high-quality structural properties of the sought-after metal chalcogenides, especially at large 2D length scales. In this effort, and for the first time, we illustrated the fast and complete inversion of continuous SnSe thin-films to Sb2Se3 using a scalable top-down ion-exchange approach. Processing in dense solution systems yielded the formation of Sb2Se3 films with favorable structural characteristics, while oxide phases, which are typically present in most Sb2Se3 films regardless of the synthetic protocols used, were eliminated. Density functional theory (DFT) calculations performed on intermediate phases show strong relaxations of the atomic lattice due to the presence of substitutional and vacancy defects, which likely enhances the mobility of cationic species during cation exchange. Our concept can be applied to customize the properties of other metal chalcogenides or manufacture layered structures.

3.
Chem Mater ; 34(24): 10849-10860, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36590704

RESUMO

Finding simple, easily controlled, and flexible synthetic routes for the preparation of ternary and hybrid nanostructured semiconductors is always highly desirable, especially to fulfill the requirements for mass production to enable application to many fields such as optoelectronics, thermoelectricity, and catalysis. Moreover, understanding the underlying reaction mechanisms is equally important, offering a starting point for its extrapolation from one system to another. In this work, we developed a new and more straightforward colloidal synthetic way to form hybrid Au-Ag2X (X = S, Se) nanoparticles under mild conditions through the reaction of Au and Ag2X nanostructured precursors in solution. At the solid-solid interface between metallic domains and the binary chalcogenide domains, a small fraction of a ternary AuAg3X2 phase was observed to have grown as a consequence of a solid-state electrochemical reaction, as confirmed by computational studies. Thus, the formation of stable ternary phases drives the selective hetero-attachment of Au and Ag2X nanoparticles in solution, consolidates the interface between their domains, and stabilizes the whole hybrid Au-Ag2X systems.

4.
J Mater Chem C Mater ; 9(17): 5662-5675, 2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33996095

RESUMO

Nanoparticles of Co3O4 and CoO are of paramount importance because of their chemical properties propelling their applications in catalysis and battery materials, and because of their intriguing magnetic properties. Here we elucidate the transformation of Co3O4 nanoparticles to CoO into nanoscale detail by in situ heating in the transmission electron microscope (TEM), and we decipher the energetics and magnetic properties of the Co3O4/CoO interface from first principles calculations. The transformation was found to start at a temperature of 350 °C, and full conversion of all particles was achieved after heating to 400 °C for 10 minutes. The transformation progressed from the surface to the center of the nanoparticles under the formation of dislocations, while the two phases maintained a cube-on-cube orientation relationship. Various possibilities for magnetic ordering were considered in the density functional theory (DFT) calculations and a favorable Co3O4/CoO {100}/{100} interface energy of 0.38 J m-2 is predicted for the lowest-energy ordering. Remarkably, the DFT calculations revealed a substantial net ferromagnetic moment originating from the interface between the two antiferromagnetic compounds, amounting to approximately 13.9 µ B nm-2. The transformation was reproduced ex situ when heating at a temperature of 400 °C in a high vacuum chamber.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...