Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 5427, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33110065

RESUMO

Sustainable soil carbon sequestration practices need to be rapidly scaled up and implemented to contribute to climate change mitigation. We highlight that the major potential for carbon sequestration is in cropland soils, especially those with large yield gaps and/or large historic soil organic carbon losses. The implementation of soil carbon sequestration measures requires a diverse set of options, each adapted to local soil conditions and management opportunities, and accounting for site-specific trade-offs. We propose the establishment of a soil information system containing localised information on soil group, degradation status, crop yield gap, and the associated carbon-sequestration potentials, as well as the provision of incentives and policies to translate management options into region- and soil-specific practices.

2.
Animal ; 7 Suppl 2: 292-302, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23739471

RESUMO

Ruminant production contributes to emissions of nitrogen (N) to the environment, principally ammonia (NH3), nitrous oxide (N2O) and di-nitrogen (N2) to air, nitrate (NO3 -) to groundwater and particulate N to surface waters. Variation in dietary N intake will particularly affect excretion of urinary N, which is much more vulnerable to losses than is faecal N. Our objective is to review dietary effects on the level and form of N excreted in cattle urine, as well as its consequences for emissions of N2O. The quantity of N excreted in urine varies widely. Urinary N excretion, in particular that of urea N, is decreased upon reduction of dietary N intake or an increase in the supply of energy to the rumen microorganisms and to the host animal itself. Most of the N in urine (from 50% to well over 90%) is present in the form of urea. Other nitrogenous components include purine derivatives (PD), hippuric acid, creatine and creatinine. Excretion of PD is related to rumen microbial protein synthesis, and that of hippuric acid to dietary concentration of degradable phenolic acids. The N concentration of cattle urine ranges from 3 to 20 g/l. High-dietary mineral levels increase urine volume and lead to reduced urinary N concentration as well as reduced urea concentration in plasma and milk. In lactating dairy cattle, variation in urine volume affects the relationship between milk urea and urinary N excretion, which hampers the use of milk urea as an accurate indicator of urinary N excretion. Following its deposition in pastures or in animal houses, ubiquitous microorganisms in soil and waters transform urinary N components into ammonium (NH4 +), and thereafter into NO3 - and ultimately in N2 accompanied with the release of N2O. Urinary hippuric acid, creatine and creatinine decompose more slowly than urea. Hippuric acid may act as a natural inhibitor of N2O emissions, but inhibition conditions have not been defined properly yet. Environmental and soil conditions at the site of urine deposition or manure application strongly influence N2O release. Major dietary strategies to mitigating N2O emission from cattle operations include reducing dietary N content or increasing energy content, and increasing dietary mineral content to increase urine volume. For further reduction of N2O emission, an integrated animal nutrition and excreta management approach is required.


Assuntos
Ração Animal/análise , Criação de Animais Domésticos , Bovinos/fisiologia , Nitrogênio/urina , Óxido Nitroso/urina , Fenômenos Fisiológicos da Nutrição Animal , Animais , Indústria de Laticínios , Óxido Nitroso/metabolismo
3.
Philos Trans R Soc Lond B Biol Sci ; 368(1621): 20130112, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23713114

RESUMO

Soil nitrogen (N) budgets are used in a global, distributed flow-path model with 0.5° × 0.5° resolution, representing denitrification and N2O emissions from soils, groundwater and riparian zones for the period 1900-2000 and scenarios for the period 2000-2050 based on the Millennium Ecosystem Assessment. Total agricultural and natural N inputs from N fertilizers, animal manure, biological N2 fixation and atmospheric N deposition increased from 155 to 345 Tg N yr(-1) (Tg = teragram; 1 Tg = 10(12) g) between 1900 and 2000. Depending on the scenario, inputs are estimated to further increase to 408-510 Tg N yr(-1) by 2050. In the period 1900-2000, the soil N budget surplus (inputs minus withdrawal by plants) increased from 118 to 202 Tg yr(-1), and this may remain stable or further increase to 275 Tg yr(-1) by 2050, depending on the scenario. N2 production from denitrification increased from 52 to 96 Tg yr(-1) between 1900 and 2000, and N2O-N emissions from 10 to 12 Tg N yr(-1). The scenarios foresee a further increase to 142 Tg N2-N and 16 Tg N2O-N yr(-1) by 2050. Our results indicate that riparian buffer zones are an important source of N2O contributing an estimated 0.9 Tg N2O-N yr(-1) in 2000. Soils are key sites for denitrification and are much more important than groundwater and riparian zones in controlling the N flow to rivers and the oceans.


Assuntos
Desnitrificação/fisiologia , Ecossistema , Modelos Teóricos , Ciclo do Nitrogênio , Óxido Nitroso/metabolismo , Solo/química , Fertilizantes/análise , Água Subterrânea/química , Esterco/análise
4.
Rapid Commun Mass Spectrom ; 23(1): 104-8, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19061209

RESUMO

To effectively mitigate emissions of the greenhouse gas nitrous oxide (N(2)O) it is essential to understand the biochemical pathways by which it is produced. The (18)O signature of N(2)O is increasingly used to characterize these processes. However, assumptions on the origin of the O atom and resultant isotopic composition of N(2)O that are based on reaction stoichiometry may be questioned. In particular, our deficient knowledge on O exchange between H(2)O and nitrogen oxides during N(2)O production complicates the interpretation of the (18)O signature of N(2)O.Here we studied O exchange during N(2)O formation in soil, using a novel combination of (18)O and (15)N tracing. Twelve soils were studied, covering soil and land-use variability across Europe. All soils demonstrated the significant presence of O exchange, as incorporation of O from (18)O-enriched H(2)O into N(2)O exceeded their maxima achievable through reaction stoichiometry. Based on the retention of the enrichment ratio of (18)O and (15)N of NO(3)(-) into N(2)O, we quantified O exchange during denitrification. Up to 97% (median 85%) of the N(2)O-O originated from H(2)O instead of from the denitrification substrate NO(3)(-).We conclude that in soil, the main source of atmospheric N(2)O, the (18)O signature of N(2)O is mainly determined by H(2)O due to O exchange between nitrogen oxides and H(2)O. This also challenges the assumption that the O of N(2)O originates from O(2) and NO(3)(-), in ratios reflecting reaction stoichiometry.


Assuntos
Óxido Nitroso/metabolismo , Isótopos de Oxigênio/química , Oxigênio/metabolismo , Solo/análise , Água/química , Europa (Continente) , Isótopos de Nitrogênio/química , Óxido Nitroso/química , Oxigênio/química
5.
Rapid Commun Mass Spectrom ; 21(22): 3569-78, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17935120

RESUMO

Stable isotope analysis of oxygen (O) is increasingly used to determine the origin of nitrate (NO(3)-) and nitrous oxide (N(2)O) in the environment. The assumption underlying these studies is that the (18)O signature of NO(3)- and N(2)O provides information on the different O sources (O(2) and H(2)O) during the production of these compounds by various biochemical pathways. However, exchange of O atoms between H(2)O and intermediates of the (de)nitrification pathways may change the isotopic signal and thereby bias its interpretation for source determination. Chemical exchange of O between H(2)O and various nitrogenous oxides has been reported, but the probability and extent of its occurrence in terrestrial ecosystems remain unclear. Biochemical O exchange between H(2)O and nitrogenous oxides, NO(2)- in particular, has been reported for monocultures of many nitrifiers and denitrifiers that are abundant in nature, with exchange rates of up to 100%. Therefore, biochemical O exchange is likely to be important in most soil ecosystems, and should be taken into account in source determination studies. Failing to do so might lead to (i) an overestimation of nitrification as NO(3)- source, and (ii) an overestimation of nitrifier denitrification and nitrification-coupled denitrification as N(2)O production pathways. A method to quantify the rate and controls of biochemical O exchange in ecosystems is needed, and we argue this can only be done reliably with artificially enriched (18)O compounds. We conclude that in N source determination studies, the O isotopic signature of especially N(2)O should only be used with extreme caution.


Assuntos
Poluentes Ambientais/química , Nitratos/química , Óxido Nitroso/química , Oxigênio/química , Água/química , Ecossistema , Monitoramento Ambiental/métodos , Poluentes Ambientais/análise , Gases/análise , Gases/química , Nitratos/análise , Óxido Nitroso/análise , Óxido Nitroso/metabolismo , Solo/análise , Microbiologia do Solo
6.
Rapid Commun Mass Spectrom ; 19(22): 3298-306, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16220527

RESUMO

We present a novel 18O-15N-enrichment method for the distinction between nitrous oxide (N2O) from nitrification, nitrifier denitrification and denitrification based on a method with single- and double-15N-labelled ammonium nitrate. We added a new treatment with 18O-labelled water to quantify N2O from nitrifier denitrification. The theory behind this is that ammonia oxidisers use oxygen (O2) from soil air for the oxidation of ammonia (NH3), but use H2O for the oxidation of the resulting hydroxylamine (NH2OH) to nitrite (NO2-). Thus, N2O from nitrification would therefore be expected to reflect the 18O signature of soil O2, whereas the 18O signature of N2O from nitrifier denitrification would reflect that of both soil O2 and H2O. It was assumed that (a) there would be no preferential removal of 18O or 16O during nitrifier denitrification or denitrification, (b) the 18O signature of the applied 18O-labelled water would remain constant over the experimental period, and (c) any O exchange between H(2)18O and NO3- would be negligible under the chosen experimental conditions. These assumptions were tested and validated for a silt loam soil at 50% water-filled pore space (WFPS) following application of 400 mg N kg-1 dry soil. We compared the results of our new method with those of a conventional inhibition method using 0.02% v/v acetylene (C2H2) and 80% v/v O2 in helium. Both the 18O-15N-enrichment and inhibitor methods identified nitrifier denitrification to be a major source of N2O, accounting for 44 and 40%, respectively, of N2O production over 24 h. However, compared to our 18O-15N-method, the inhibitor method overestimated the contribution from nitrification at the expense of denitrification, probably due to incomplete inhibition of nitrifier denitrification and denitrification by large concentrations of O2 and a negative effect of C2H2 on denitrification. We consider our new 18O-15N-enrichment method to be more reliable than the use of inhibitors; it enables the distinction between more soil sources of N2O than was previously possible and has provided the first direct evidence of the significance of nitrifier denitrification as a source of N2O in fertilised arable soil.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...