Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Lett ; 18(3): 20220035, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35291885

RESUMO

In nature, light is a key driver of animal behaviour and physiology. When studying captive or laboratory animals, researchers usually expose animals to a period of darkness, to mimic night. However, 'darkness' is often poorly quantified and its importance is generally underappreciated in animal research. Even small differences in nocturnal light conditions can influence biology. When light levels during the dark phase are not reported accurately, experiments can be impossible to replicate and compare. Furthermore, when nocturnal light levels are unrealistically dark or bright, the research is less ecologically relevant. Such issues are exacerbated by huge differences in the sensitivity of different light meters, which are not always described in study methods. We argue that nocturnal light levels need to be reported clearly and precisely, particularly in studies of animals housed indoors (e.g. '<0.03 lux' rather than '0 lux' or 'dark'), and that these light levels should reflect conditions that the animal would experience in a natural context.


Assuntos
Experimentação Animal , Iluminação , Animais , Comportamento Animal/fisiologia , Ritmo Circadiano/fisiologia , Escuridão , Luz
2.
Insects ; 12(12)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34940205

RESUMO

(1) The project "Tatort Streetlight" implements an insect-friendly road light design in a four year before-after, control-impact (BACI) approach involving citizen scientists. It will broaden the stakeholder interests from solely anthropogenic perspectives to include the welfare of insects and ecosystems. Motivated by the detrimental impacts of road lighting systems on insects, the project aims to find solutions to reduce the insect attraction and habitat fragmentation resulting from roadway illumination. (2) The citizen science approach invites stakeholders to take part and join forces for the development of a sustainable and environmentally friendly road lighting solution. Here, we describe the project strategy, stakeholder participation and motivation, and how the effects of the alternative road luminaire and lighting design can be evaluated. (3) The study compares the changes in (a) insect behavior, (b) night sky brightness, and (c) stakeholder participation and awareness. For this purpose, different experimental areas and stakeholders in four communities in Germany are identified. (4) The project transfers knowledge of adverse effects of improperly managed road illumination and interacts with various stakeholders to develop a new road lighting system that will consider the well-being of street users, local residents, and insects.

3.
Integr Comp Biol ; 61(3): 1182-1190, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34180520

RESUMO

The use of artificial light at night (ALAN) is increasing exponentially worldwide and there is growing evidence that ALAN contributes to the decline of insect populations. One of the most conspicuous ecological effects is the strong attraction of ALAN to flying insects. In several studies, light sources with strong short-wavelength emissions have been shown to attract the highest numbers of flying insects. Furthermore, flying stages of aquatic insects are reported to be more vulnerable to ALAN than flying stages of terrestrial insects. This is concerning because freshwater habitats are likely affected by ALAN that originates from human activity centers, which are typically close to sources of freshwater. However, the effects of ALAN on aquatic insects, which spend their larval phase (amphibiotic insects) or their whole life cycle (fully aquatic insects) in freshwaters, are entirely understudied. Here, we investigated the phototaxis of aquatic insects to ALAN at different wavelengths and intensities. We used floating light traps and compared four, near-monochromatic, lights (blue, green, red, and yellow) at two different photopic light intensities in a ditch system, which was not exposed to ALAN previously. Similar to flying stages of (aquatic and terrestrial) insects, we found a strong positive phototaxis of aquatic life stages. However, in contrast to the flying stages, there is no clear preference for short-wavelength light. Overall, responsivity to wavelengths in the center of the visible range (green, yellow; 500-600 nm) was significant for all orders of aquatic insects studied, and the nymphs of Ephemeroptera did not respond to blue light at all. This is likely an adaption to how light is attenuated in freshwater systems, where not only the water itself but also a variety of optical constituents act as a color filter, often like in our case filtering out short-wavelength light. Therefore, insects living in freshwater bodies often live in longer wavelength-dominated environments and might therefore be especially sensitive to green/yellow light. In conclusion, the different spectral sensitivities of both aquatic and flying insects should be taken into account when planning lighting near freshwater.


Assuntos
Poluição Ambiental , Insetos , Luz , Fototaxia , Animais , Ecossistema
4.
Curr Biol ; 30(12): R694-R695, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32574627

RESUMO

Van Grunsven et al. experimentally test the long-term effects of artificial light on natural moth populations. In the initial two years there was no effect on populations, but in the latter three years population sizes were reduced compared with the dark controls. This shows that artificial light negatively affects moth populations.


Assuntos
Luz/efeitos adversos , Iluminação/efeitos adversos , Mariposas/efeitos da radiação , Animais , Cor , Conservação dos Recursos Naturais , Mariposas/fisiologia , Países Baixos , Dinâmica Populacional
5.
J Exp Zool A Ecol Integr Physiol ; 329(8-9): 441-448, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29952126

RESUMO

Light pollution is increasing worldwide and significantly affects animal behavior. In birds, these effects include advancement of morning activity and onset of dawn song, which may affect extra-pair paternity. Advanced dawn song of males may stimulate females to engage in extra-pair copulations, and the earlier activity onset may affect the males' mate guarding behavior. Earlier work showed an effect of light at night on extra-pair behavior, but this was in an area with other anthropogenic disturbances. Here, we present a two-year experimental study on effects of light at night on extra-pair paternity of great tits (Parus major). Previously dark natural areas were illuminated with white, red, and green LED lamps and compared to a dark control. In 2014, the proportion of extra-pair young in broods increased with distance to the red and white lamps (i.e., at lower light intensities), but decreased with distance to the poles in the dark control. In 2013, we found no effects on the proportion of extra-pair young. The total number of offspring sired by a male was unaffected by artificial light at night in both years, suggesting that potential changes in female fidelity in pairs breeding close to white and red light did not translate into fitness benefits for the males of these pairs. Artificial light at night might disrupt the natural patterns of extra-pair paternity, possibly negates potential benefits of extra-pair copulations and thus could alter sexual selection processes in wild birds.


Assuntos
Cor , Iluminação/efeitos adversos , Passeriformes/fisiologia , Comportamento Sexual Animal/efeitos da radiação , Animais , Exposição Ambiental , Feminino , Luz/efeitos adversos , Masculino
6.
J Exp Zool A Ecol Integr Physiol ; 329(8-9): 434-440, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29944198

RESUMO

Light sources attract nocturnal flying insects, but some lamps attract more insects than others. The relation between the properties of a light source and the number of attracted insects is, however, poorly understood. We developed a model to quantify the attractiveness of light sources based on the spectral output. This model is fitted using data from field experiments that compare a large number of different light sources. We validated this model using two additional datasets, one for all insects and one excluding the numerous Diptera. Our model facilitates the development and application of light sources that attract fewer insects without the need for extensive field tests and it can be used to correct for spectral composition when formulating hypotheses on the ecological impact of artificial light. In addition, we present a tool allowing the conversion of the spectral output of light sources to their relative insect attraction based on this model.


Assuntos
Cor , Voo Animal/efeitos da radiação , Insetos/fisiologia , Fototaxia , Animais , Comportamento Animal/efeitos da radiação , Luz , Iluminação
7.
Environ Pollut ; 240: 630-638, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29772513

RESUMO

The increasing use of artificial light at night (ALAN) has led to exposure of freshwater ecosystems to light pollution worldwide. Simultaneously, the spectral composition of nocturnal illumination is changing, following the current shift in outdoor lighting technologies from traditional light sources to light emitting diodes (LED). LEDs emit broad-spectrum white light, with a significant amount of photosynthetically active radiation, and typically a high content of blue light that regulates circadian rhythms in many organisms. While effects of the shift to LED have been investigated in nocturnal animals, its impact on primary producers is unknown. We performed three field experiments in a lowland agricultural drainage ditch to assess the impacts of a transition from high-pressure sodium (HPS) to white LED illumination (color temperature 4000 K) on primary producers in periphyton. In all experiments, we compared biomass and pigment composition of periphyton grown under a natural light regime to that of periphyton exposed to nocturnal HPS or, consecutively, LED light of intensities commonly found in urban waters (approximately 20 lux). Periphyton was collected in time series (1-13 weeks). We found no effect of HPS light on periphyton biomass; however, following a shift to LED the biomass decreased up to 62%. Neither light source had a substantial effect on pigment composition. The contrasting effects of the two light sources on biomass may be explained by differences in their spectral composition, and in particular the blue content. Our results suggest that spectral composition of the light source plays a role in determining the impacts of ALAN on periphyton and that the ongoing transition to LED may increase the ecological impacts of artificial lighting on aquatic primary producers. Reduced biomass in the base of the food web can impact ecosystem functions such as productivity and food supply for higher trophic levels in nocturnally-lit ecosystems.


Assuntos
Biomassa , Cadeia Alimentar , Luz/efeitos adversos , Iluminação/métodos , Perifíton/fisiologia , Perifíton/efeitos da radiação , Fotossíntese/fisiologia , Animais , Cor , Ecossistema , Poluição Ambiental
8.
J Exp Zool A Ecol Integr Physiol ; 329(8-9): 429-433, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29761669

RESUMO

Artificial illumination increases around the globe and this has been found to affect many groups of organisms and ecosystems. By manipulating nocturnal illumination using one large experimental field site with 24 streetlights and one dark control, we assessed the impact of artificial illumination on slugs over a period of 4 years. The number of slugs, primarily Arionidae, increased strongly in the illuminated site but not on the dark site. There are several nonexclusive explanations for this effect, including reduced predation and increased food quality in the form of carcasses of insects attracted by the light. As slugs play an important role in ecosystems and are also important pest species, the increase of slugs under artificial illumination cannot only affect ecosystem functioning but also have important economic consequences.


Assuntos
Gastrópodes/efeitos da radiação , Iluminação , Animais , Ecossistema , Exposição Ambiental , Alemanha , Luz
9.
Glob Chang Biol ; 24(3): 925-932, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29215778

RESUMO

Given the global continuous rise, artificial light at night is often considered a driving force behind moth population declines. Although negative effects on individuals have been shown, there is no evidence for effects on population sizes to date. Therefore, we compared population trends of Dutch macromoth fauna over the period 1985-2015 between moth species that differ in phototaxis and adult circadian rhythm. We found that moth species that show positive phototaxis or are nocturnally active have stronger negative population trends than species that are not attracted to light or are diurnal species. Our results indicate that artificial light at night is an important factor in explaining declines in moth populations in regions with high artificial night sky brightness. Our study supports efforts to reduce the impacts of artificial light at night by promoting lamps that do not attract insects and reduce overall levels of illumination in rural areas to reverse declines of moth populations.


Assuntos
Ritmo Circadiano , Luz , Iluminação , Mariposas/fisiologia , Animais , Conservação dos Recursos Naturais , Comportamento Alimentar , Países Baixos , Fototaxia , Dinâmica Populacional
11.
Glob Chang Biol ; 23(11): 4987-4994, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28597541

RESUMO

The natural nighttime environment is increasingly polluted by artificial light. Several studies have linked artificial light at night to negative impacts on human health. In free-living animals, light pollution is associated with changes in circadian, reproductive, and social behavior, but whether these animals also suffer from physiologic costs remains unknown. To fill this gap, we made use of a unique network of field sites which are either completely unlit (control), or are artificially illuminated with white, green, or red light. We monitored nighttime activity of adult great tits, Parus major, and related this activity to within-individual changes in physiologic indices. Because altered nighttime activity as a result of light pollution may affect health and well-being, we measured oxalic acid concentrations as a biomarker for sleep restriction, acute phase protein concentrations and malaria infection as indices of immune function, and telomere lengths as an overall measure of metabolic costs. Compared to other treatments, individuals roosting in the white light were much more active at night. In these individuals, oxalic acid decreased over the course of the study. We also found that individuals roosting in the white light treatment had a higher probability of malaria infection. Our results indicate that white light at night increases nighttime activity levels and sleep debt and affects disease dynamics in a free-living songbird. Our study offers the first evidence of detrimental effects of light pollution on the health of free-ranging wild animals.


Assuntos
Ritmo Circadiano/efeitos da radiação , Poluição Ambiental , Luz/efeitos adversos , Sono/efeitos da radiação , Aves Canoras/fisiologia , Animais , Metabolismo Energético/efeitos da radiação , Feminino , Imunidade Inata/efeitos da radiação , Masculino , Atividade Motora/efeitos da radiação
12.
Proc Biol Sci ; 284(1855)2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28566484

RESUMO

Artificial light at night has shown a remarkable increase over the past decades. Effects are reported for many species groups, and include changes in presence, behaviour, physiology and life-history traits. Among these, bats are strongly affected, and how bat species react to light is likely to vary with light colour. Different spectra may therefore be applied to reduce negative impacts. We used a unique set-up of eight field sites to study the response of bats to three different experimental light spectra in an otherwise dark and undisturbed natural habitat. We measured activity of three bat species groups around transects with light posts emitting white, green and red light with an intensity commonly used to illuminate countryside roads. The results reveal a strong and spectrum-dependent response for the slow-flying Myotis and Plecotus and more agile Pipistrellus species, but not for Nyctalus and Eptesicus species. Plecotus and Myotis species avoided white and green light, but were equally abundant in red light and darkness. The agile, opportunistically feeding Pipistrellus species were significantly more abundant around white and green light, most likely because of accumulation of insects, but equally abundant in red illuminated transects compared to dark control. Forest-dwelling Myotis and Plecotus species and more synanthropic Pipistrellus species are thus least disturbed by red light. Hence, in order to limit the negative impact of light at night on bats, white and green light should be avoided in or close to natural habitat, but red lights may be used if illumination is needed.


Assuntos
Comportamento Animal/efeitos da radiação , Quirópteros/fisiologia , Luz , Animais , Iluminação
13.
Biol Lett ; 13(3)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28250209

RESUMO

One major, yet poorly studied, change in the environment is nocturnal light pollution, which strongly alters habitats of nocturnally active species. Artificial night lighting is often considered as driving force behind rapid moth population declines in severely illuminated countries. To understand these declines, the question remains whether artificial light causes only increased mortality or also sublethal effects. We show that moths subjected to artificial night lighting spend less time feeding than moths in darkness, with the shortest time under light conditions rich in short wavelength radiation. These findings provide evidence for sublethal effects contributing to moth population declines. Because effects are strong under various types of light compared with dark conditions, the potential of spectral alterations as a conservation tool may be overestimated. Therefore, restoration and maintenance of darkness in illuminated areas is essential for reversing declines of moth populations.


Assuntos
Comportamento Alimentar/efeitos da radiação , Iluminação/efeitos adversos , Mariposas/efeitos da radiação , Animais , Conservação dos Recursos Naturais/métodos , Feminino , Luz/efeitos adversos , Masculino , Mariposas/fisiologia
14.
R Soc Open Sci ; 4(1): 160638, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28280562

RESUMO

Light pollution is increasing exponentially, but its impact on animal behaviour is still poorly understood. For songbirds, the most repeatable finding is that artificial night lighting leads to an earlier daily onset of dawn singing. Most of these studies are, however, correlational and cannot entirely dissociate effects of light pollution from other effects of urbanization. In addition, there are no studies in which the effects of different light colours on singing have been tested. Here, we investigated whether the timing of dawn singing in wild songbirds is influenced by artificial light using an experimental set-up with conventional street lights. We illuminated eight previously dark forest edges with white, green, red or no light, and recorded daily onset of dawn singing during the breeding season. Based on earlier work, we predicted that onset of singing would be earlier in the lighted treatments, with the strongest effects in the early-singing species. However, we found no significant effect of the experimental night lighting (of any colour) in the 14 species for which we obtained sufficient data. Confounding effects of urbanization in previous studies may explain these results, but we also suggest that the experimental night lighting may not have been strong enough to have an effect on singing.

15.
PLoS One ; 11(6): e0157357, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27355354

RESUMO

Studies of wild populations have provided important insights into the effects of artificial light at night on organisms, populations and ecosystems. However, in most studies the exact amount of light at night individuals are exposed to remains unknown. Individuals can potentially control their nighttime light exposure by seeking dark spots within illuminated areas. This uncertainty makes it difficult to attribute effects to a direct effect of light at night, or to indirect effects, e.g., via an effect of light at night on food availability. In this study, we aim to quantify the nocturnal light exposure of wild birds in a previously dark forest-edge habitat, experimentally illuminated with three different colors of street lighting, in comparison to a dark control. During two consecutive breeding seasons, we deployed male great tits (Parus major) with a light logger measuring light intensity every five minutes over a 24h period. We found that three males from pairs breeding in brightly illuminated nest boxes close to green and red lamp posts, were not exposed to more artificial light at night than males from pairs breeding further away. This suggests, based on our limited sample size, that these males could have been avoiding light at night by choosing a roosting place with a reduced light intensity. Therefore, effects of light at night previously reported for this species in our experimental set-up might be indirect. In contrast to urban areas where light is omnipresent, bird species in non-urban areas may evade exposure to nocturnal artificial light, thereby avoiding direct consequences of light at night.


Assuntos
Luz , Passeriformes/fisiologia , Comportamento Sexual Animal , Animais , Animais Selvagens , Ritmo Circadiano , Ecossistema , Poluição Ambiental , Feminino , Masculino , Estimulação Luminosa , Reprodução
16.
17.
Biol Lett ; 11(8)2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26311159

RESUMO

Organisms have evolved under natural daily light/dark cycles for millions of years. These cycles have been disturbed as night-time darkness is increasingly replaced by artificial illumination. Investigating the physiological consequences of free-living organisms in artificially lit environments is crucial to determine whether nocturnal lighting disrupts circadian rhythms, changes behaviour, reduces fitness and ultimately affects population numbers. We make use of a unique, large-scale network of replicated field sites which were experimentally illuminated at night using lampposts emanating either red, green, white or no light to test effect on stress hormone concentrations (corticosterone) in a songbird, the great tit (Parus major). Adults nesting in white-light transects had higher corticosterone concentrations than in the other treatments. We also found a significant interaction between distance to the closest lamppost and treatment type: individuals in red light had higher corticosterone levels when they nested closer to the lamppost than individuals nesting farther away, a decline not observed in the green or dark treatment. Individuals with high corticosterone levels had fewer fledglings, irrespective of treatment. These results show that artificial light can induce changes in individual hormonal phenotype. As these effects vary considerably with light spectrum, it opens the possibility to mitigate these effects by selecting street lighting of specific spectra.


Assuntos
Corticosterona/sangue , Luz/efeitos adversos , Iluminação/efeitos adversos , Passeriformes/fisiologia , Animais , Escuridão , Reprodução/efeitos da radiação , Estresse Fisiológico
18.
Philos Trans R Soc Lond B Biol Sci ; 370(1667)2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25780241

RESUMO

Artificial night-time illumination of natural habitats has increased dramatically over the past few decades. Generally, studies that assess the impact of artificial light on various species in the wild make use of existing illumination and are therefore correlative. Moreover, studies mostly focus on short-term consequences at the individual level, rather than long-term consequences at the population and community level-thereby ignoring possible unknown cascading effects in ecosystems. The recent change to LED lighting has opened up the exciting possibility to use light with a custom spectral composition, thereby potentially reducing the negative impact of artificial light. We describe here a large-scale, ecosystem-wide study where we experimentally illuminate forest-edge habitat with different spectral composition, replicated eight times. Monitoring of species is being performed according to rigid protocols, in part using a citizen-science-based approach, and automated where possible. Simultaneously, we specifically look at alterations in behaviour, such as changes in activity, and daily and seasonal timing. In our set-up, we have so far observed that experimental lights facilitate foraging activity of pipistrelle bats, suppress activity of wood mice and have effects on birds at the community level, which vary with spectral composition. Thus far, we have not observed effects on moth populations, but these and many other effects may surface only after a longer period of time.


Assuntos
Aves/fisiologia , Ecossistema , Insetos/fisiologia , Iluminação/efeitos adversos , Mamíferos/fisiologia , Animais , Monitoramento Ambiental , Poluição Ambiental , Camundongos , Especificidade da Espécie
19.
Philos Trans R Soc Lond B Biol Sci ; 370(1667)2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25780240

RESUMO

The effects of artificial night lighting on animal behaviour and fitness are largely unknown. Most studies report short-term consequences in locations that are also exposed to other anthropogenic disturbance. We know little about how the effects of nocturnal illumination vary with different light colour compositions. This is increasingly relevant as the use of LED lights becomes more common, and LED light colour composition can be easily adjusted. We experimentally illuminated previously dark natural habitat with white, green and red light, and measured the effects on life-history decisions and fitness in two free-living songbird species, the great tit (Parus major) and pied flycatcher (Ficedula hypoleuca) in two consecutive years. In 2013, but not in 2014, we found an effect of light treatment on lay date, and of the interaction of treatment and distance to the nearest lamp post on chick mass in great tits but not in pied flycatchers. We did not find an effect in either species of light treatment on breeding densities, clutch size, probability of brood failure, number of fledglings and adult survival. The finding that light colour may have differential effects opens up the possibility to mitigate negative ecological effects of nocturnal illumination by using different light spectra.


Assuntos
Comportamento Animal/efeitos da radiação , Ritmo Circadiano , Aptidão Genética/efeitos da radiação , Iluminação/efeitos adversos , Aves Canoras/fisiologia , Animais , Monitoramento Ambiental , Poluição Ambiental , Reprodução/efeitos da radiação , Aves Canoras/genética , Especificidade da Espécie
20.
Ecol Evol ; 4(11): 2082-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25360250

RESUMO

Rapidly increasing levels of light pollution subject nocturnal organisms to major alterations of their habitat, the ecological consequences of which are largely unknown. Moths are well-known to be attracted to light at night, but effects of light on other aspects of moth ecology, such as larval development and life-history, remain unknown. Such effects may have important consequences for fitness and thus for moth population sizes. To study the effects of artificial night lighting on development and life-history of moths, we experimentally subjected Mamestra brassicae (Noctuidae) caterpillars to low intensity green, white, red or no artificial light at night and determined their growth rate, maximum caterpillar mass, age at pupation, pupal mass and pupation duration. We found sex-specific effects of artificial light on caterpillar life-history, with male caterpillars subjected to green and white light reaching a lower maximum mass, pupating earlier and obtaining a lower pupal mass than male caterpillars under red light or in darkness. These effects can have major implications for fitness, but were absent in female caterpillars. Moreover, by the time that the first adult moth from the dark control treatment emerged from its pupa (after 110 days), about 85% of the moths that were under green light and 83% of the moths that were under white light had already emerged. These differences in pupation duration occurred in both sexes and were highly significant, and likely result from diapause inhibition by artificial night lighting. We conclude that low levels of nocturnal illumination can disrupt life-histories in moths and inhibit the initiation of pupal diapause. This may result in reduced fitness and increased mortality. The application of red light, instead of white or green light, might be an appropriate measure to mitigate negative artificial light effects on moth life history.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...