Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol J ; 18(6): e2200549, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36965129

RESUMO

It is common practice in the development of bioprocesses to genetically modify a microorganism and study a large number of resulting mutants in order to select the ones that perform best for use at the industrial scale. At industrial scale, strict nutrient-controlled growth conditions are imposed to control the metabolic activity and growth rate of the microorganism, thereby enhancing the expression of the product of interest. Although it is known that microorganisms that perform best under these strictly controlled conditions are not the same as the ones that perform best under uncontrolled batch conditions, screening, and selection is predominantly performed under batch conditions. Tools that afford high throughput on the one hand and dynamic control over cultivation conditions on the other hand are not yet available. Microbioreactors offer the potential to address this problem, resolving the gap between bioprocess development and industrial scale use. In this review, we highlight the current state-of-the-art of microbioreactors that offer the potential to screen microorganisms under dynamically controlled conditions. We classify them into: (i) microtiter plate-based platforms, (ii) microfluidic chamber-based platforms, and (iii) microfluidic droplet-based platforms. We conclude this review by discussing the opportunities of nutrient-fed microbioreactors in the field of biotechnology.


Assuntos
Reatores Biológicos , Biotecnologia , Biotecnologia/métodos , Fermentação , Microfluídica , Meios de Cultura
2.
Eng Life Sci ; 23(1): e2100139, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36619886

RESUMO

In large-scale bioreactors, there is often insufficient mixing and as a consequence, cells experience uneven substrate and oxygen levels that influence product formation. In this study, the influence of dissolved oxygen (DO) gradients on the primary and secondary metabolism of a high producing industrial strain of Penicillium chrysogenum was investigated. Within a wide range of DO concentrations, obtained under chemostat conditions, we observed different responses from P. chrysogenum: (i) no influence on growth or penicillin production (>0.025 mmol L-1); (ii) reduced penicillin production, but no growth limitation (0.013-0.025 mmol L-1); and (iii) growth and penicillin production limitations (<0.013 mmol L-1). In addition, scale down experiments were performed by oscillating the DO concentration in the bioreactor. We found that during DO oscillation, the penicillin production rate decreased below the value observed when a constant DO equal to the average oscillating DO value was used. To understand and predict the influence of oxygen levels on primary metabolism and penicillin production, we developed a black box model that was linked to a detailed kinetic model of the penicillin pathway. The model simulations represented the experimental data during the step experiments; however, during the oscillation experiments the predictions deviated, indicating the involvement of the central metabolism in penicillin production.

3.
Synth Syst Biotechnol ; 7(1): 554-566, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35128088

RESUMO

Product yield on carbohydrate feedstocks is a key performance indicator for industrial ethanol production with the yeast Saccharomyces cerevisiae. This paper reviews pathway engineering strategies for improving ethanol yield on glucose and/or sucrose in anaerobic cultures of this yeast by altering the ratio of ethanol production, yeast growth and glycerol formation. Particular attention is paid to strategies aimed at altering energy coupling of alcoholic fermentation and to strategies for altering redox-cofactor coupling in carbon and nitrogen metabolism that aim to reduce or eliminate the role of glycerol formation in anaerobic redox metabolism. In addition to providing an overview of scientific advances we discuss context dependency, theoretical impact and potential for industrial application of different proposed and developed strategies.

4.
Methods Mol Biol ; 2349: 11-39, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34718989

RESUMO

Obtaining meaningful snapshots of the metabolome of microorganisms requires rapid sampling and immediate quenching of all metabolic activity, to prevent any changes in metabolite levels after sampling. Furthermore, a suitable extraction method is required ensuring complete extraction of metabolites from the cells and inactivation of enzymatic activity, with minimal degradation of labile compounds. Finally, a sensitive, high-throughput analysis platform is needed to quantify a large number of metabolites in a small amount of sample. An issue which has often been overlooked in microbial metabolomics is the fact that many intracellular metabolites are also present in significant amounts outside the cells and may interfere with the quantification of the endo metabolome. Attempts to remove the extracellular metabolites with dedicated quenching methods often induce release of intracellular metabolites into the quenching solution. For eukaryotic microorganisms, this release can be minimized by adaptation of the quenching method. For prokaryotic cells, this has not yet been accomplished, so the application of a differential method whereby metabolites are measured in the culture supernatant as well as in total broth samples, to calculate the intracellular levels by subtraction, seems to be the most suitable approach. Here we present an overview of different sampling, quenching, and extraction methods developed for microbial metabolomics, described in the literature. Detailed protocols are provided for rapid sampling, quenching, and extraction, for measurement of metabolites in total broth samples, washed cell samples, and supernatant, to be applied for quantitative metabolomics of both eukaryotic and prokaryotic microorganisms.


Assuntos
Metaboloma , Metabolômica , Projetos de Pesquisa
5.
Fungal Biol ; 125(5): 368-377, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33910678

RESUMO

Intracellular metabolites were evaluated during the continuous growth of Trichoderma harzianum P49P11 under carbon-limited conditions. Four different conditions in duplicate were investigated (10 and 20 g/L of glucose, 5.26/5.26 g/L of fructose/glucose and 10 g/L of sucrose in the feed). Differences in the values of some specific concentrations of intracellular metabolites were observed at steady-state for the duplicates. The presence of extracellular polysaccharide was confirmed in the supernatant of all conditions based on FT-IR and proton NMR. Fragments of polysaccharides from the cell wall could be released due to the shear stress and since the cells can consume them under carbon-limited conditions, this could create an unpredictable carbon flow rate into the cells. According to the values of the metabolite concentrations, it was considered that the consumption of those fragments was interfering with the analysis.


Assuntos
Hypocreales , Carbono , Espectroscopia de Infravermelho com Transformada de Fourier , Sacarose
6.
Fungal Biol ; 125(3): 177-183, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33622533

RESUMO

Carbon-limited chemostat cultures were performed using different carbon sources (glucose, 10 and 20 g/L; sucrose, 10 g/L; fructose/glucose, 5.26/5.26 g/L; carboxymethyl cellulose, 10 g/L; and carboxymethyl cellulose/glucose, 5/5 g/L) to verify the capability of the wild type strain Trichoderma harzianum to produce extracellular enzymes. All chemostat cultures were carried out at a fixed dilution rate of 0.05 h-1. Experiments using glucose, fructose/glucose and sucrose were performed in duplicate. Glucose condition was found to induce the production of enzymes that can catalyse the hydrolysis of p-nitrophenyl-ß-d-glucopyranoside (PNPGase). A concentration of 20 g/L of glucose in the feed provided the highest productivity (1048 ± 16 U/mol h). Extracellular polysaccharides were considered the source of inducers. Based on the obtained results, a new PNPGase production process was developed using mainly glucose. This process raises interesting possibilities of synthesizing the inducer substrate and the induced enzymes in a single step using an easily assimilated carbon source under carbon-limited conditions.


Assuntos
Hypocreales , Carbono , Celulose/metabolismo , Fermentação , Glucose , Hidrólise
7.
Biotechnol Bioeng ; 118(4): 1576-1586, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33410171

RESUMO

This study explores the relation between biomass-specific succinic acid (SA) production rate and specific growth rate of an engineered industrial strain of Saccharomyces cerevisiae, with the aim to investigate the extent to which growth and product formation can be uncoupled. Ammonium-limited aerobic chemostat and retentostat cultures were grown at different specific growth rates under industrially relevant conditions, that is, at a culture pH of 3 and with sparging of a 1:1 CO2 -air mixture. Biomass-specific SA production rates decreased asymptotically with decreasing growth rate. At near-zero growth rates, the engineered strain maintained a stable biomass-specific SA production rate for over 500 h, with a SA yield on glucose of 0.61 mol mol-1 . These results demonstrate that uncoupling of growth and SA production could indeed be achieved. A linear relation between the biomass-specific SA production rate and glucose consumption rate indicated the coupling of SA production rate and the flux through primary metabolism. The low culture pH resulted in an increased death rate, which was lowest at near-zero growth rates. Nevertheless, a significant amount of non-viable biomass accumulated in the retentostat cultures, thus underlining the importance of improving low-pH tolerance in further strain development for industrial SA production with S. cerevisiae.


Assuntos
Biomassa , Reatores Biológicos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Ácido Succínico/metabolismo , Glucose/metabolismo
8.
J Proteomics ; 227: 103922, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32736135

RESUMO

The wild type strain Trichoderma harzianum was able to synthesize enzymes that can catalyse the hydrolysis of p-nitrophenyl-ß-D-glucopyranoside (PNPGase) in glucose-limited chemostat cultures. Fructose/glucose and sucrose conditions provided low levels of PNPGase activity. To investigate whether under these conditions other enzymes were produced, a shotgun proteomics analysis of their supernatants was performed. The analysis has indicated that the different carbon sources used influenced the amounts of proteins secreted including 1,3-beta-glucanosyltransferase, alpha-1,2-mannosidase, alpha-galactosidase and glucan 1,3-beta-glucosidase. The analysis has also suggested the presence of beta-glucosidase, which could also be represented by PNPGase activity. Intracellular metabolites were quantified during PNPGase production for the condition using 20 g/L of glucose in the feed and differences were observed, indicating that intracellular glucose could be inhibiting PNPGase production. SIGNIFICANCE: This work shows that sugars such as glucose, fructose/glucose and sucrose can be used as substrates for the continuous synthesis of different enzymes under carbon-limited conditions by Trichoderma harzianum. As far as we know, this is the first work about the continuous synthesis of enzymes under carbon-limited conditions suggesting that different easily assimilated carbon sources can be used to generate different enzymatic cocktails. Each enzyme or uncharacterized protein suggested by shotgun proteomics has the potential to become a promising product for biotechnological applications.


Assuntos
Trichoderma , Carbono , Hidrólise , Hypocreales , beta-Glucosidase
9.
Biotechnol Rep (Amst) ; 26: e00462, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32477898

RESUMO

A phenotypic screening of 12 industrial yeast strains and the well-studied laboratory strain CEN.PK113-7D at cultivation temperatures between 12 °C and 40 °C revealed significant differences in maximum growth rates and temperature tolerance. From those 12, two strains, one performing best at 12 °C and the other at 40 °C, plus the laboratory strain, were selected for further physiological characterization in well-controlled bioreactors. The strains were grown in anaerobic chemostats, at a fixed specific growth rate of 0.03 h-1 and sequential batch cultures at 12 °C, 30 °C, and 39 °C. We observed significant differences in biomass and ethanol yields on glucose, biomass protein and storage carbohydrate contents, and biomass yields on ATP between strains and cultivation temperatures. Increased temperature tolerance coincided with higher energetic efficiency of cell growth, indicating that temperature intolerance is a result of energy wasting processes, such as increased turnover of cellular components (e.g. proteins) due to temperature induced damage.

10.
Lab Chip ; 20(8): 1398-1409, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32255441

RESUMO

We developed a microfluidic droplet on-demand (DoD) generator that enables the production of droplets with a volume solely governed by the geometry of the generator for a range of operating conditions. The prime reason to develop this novel type of DoD generator is that its robustness in operation enables scale out and operation under non-steady conditions, which are both essential features for the further advancement of droplet-based assays. We first detail the working principle of the DoD generator and study the sensitivity of the volume of the generated droplets with respect to the used fluids and control parameters. We next compare the performance of our DoD generator when scaled out to 8 parallel generators to the performance of a conventional DoD generator in which the droplet volume is not geometry-controlled, showing its superior performance. Further scale out to 64 parallel DoD generators shows that all generators produce droplets with a volume between 91% and 105% of the predesigned volume. We conclude the paper by presenting a simple droplet-based assay in which the DoD generator enables sequential supply of reagent droplets to a droplet stored in the device, illustrating its potential to be used in droplet-based assays for biochemical studies under non-steady operation conditions.

11.
Curr Opin Biotechnol ; 64: 116-123, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32088622

RESUMO

Redox metabolism plays an essential role in the central metabolic network of all living cells, connecting, but at the same time separating, catabolic and anabolic pathways. Redox metabolism is inherently linked to the excretion of overflow metabolites. Overflow metabolism allows for higher substrate uptake rates, potentially outcompeting other microorganisms for the same substrate. Within dynamically changing environments, overflow metabolism can act as storage mechanism, as is shown in many recently described processes. However, for complete understanding of these mechanisms, the intracellular state of the metabolism must be elucidated. In recent years, progress has been made in the field of metabolomics to improve the accuracy and precision of measurements of intracellular and intercompartmental metabolites. This article highlights several of these recent advances, with focus on redox cofactor measurements, both fluorescence and mass spectrometry based.


Assuntos
Redes e Vias Metabólicas , Metabolômica , Cinética , Espectrometria de Massas , Oxirredução
12.
Appl Environ Microbiol ; 85(20)2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31375494

RESUMO

So far, the physiology of Saccharomyces cerevisiae at near-zero growth rates has been studied in retentostat cultures with a growth-limiting supply of the carbon and energy source. Despite its relevance in nature and industry, the near-zero growth physiology of S. cerevisiae under conditions where growth is limited by the supply of non-energy substrates remains largely unexplored. This study analyzes the physiology of S. cerevisiae in aerobic chemostat and retentostat cultures grown under either ammonium or phosphate limitation. To compensate for loss of extracellular nitrogen- or phosphorus-containing compounds, establishing near-zero growth rates (µ < 0.002 h-1) in these retentostats required addition of low concentrations of ammonium or phosphate to reservoir media. In chemostats as well as in retentostats, strongly reduced cellular contents of the growth-limiting element (nitrogen or phosphorus) and high accumulation levels of storage carbohydrates were observed. Even at near-zero growth rates, culture viability in non-energy-limited retentostats remained above 80% and ATP synthesis was still sufficient to maintain an adequate energy status and keep cells in a metabolically active state. Compared to similar glucose-limited retentostat cultures, the nitrogen- and phosphate-limited cultures showed aerobic fermentation and a partial uncoupling of catabolism and anabolism. The possibility to achieve stable, near-zero growth cultures of S. cerevisiae under nitrogen or phosphorus limitation offers interesting prospects for high-yield production of bio-based chemicals.IMPORTANCE The yeast Saccharomyces cerevisiae is a commonly used microbial host for production of various biochemical compounds. From a physiological perspective, biosynthesis of these compounds competes with biomass formation in terms of carbon and/or energy equivalents. Fermentation processes functioning at extremely low or near-zero growth rates would prevent loss of feedstock to biomass production. Establishing S. cerevisiae cultures in which growth is restricted by the limited supply of a non-energy substrate therefore could have a wide range of industrial applications but remains largely unexplored. In this work we accomplished near-zero growth of S. cerevisiae through limited supply of a non-energy nutrient, namely, the nitrogen or phosphorus source, and carried out a quantitative physiological study of the cells under these conditions. The possibility to achieve near-zero-growth S. cerevisiae cultures through limited supply of a non-energy nutrient may offer interesting prospects to develop novel fermentation processes for high-yield production of bio-based chemicals.


Assuntos
Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/fisiologia , Compostos de Amônio/metabolismo , Técnicas de Cultura Celular por Lotes , Biomassa , Reatores Biológicos , Carbono/metabolismo , Meios de Cultura/química , Fermentação , Glucose/metabolismo , Redes e Vias Metabólicas , Modelos Biológicos , Nitrogênio/metabolismo , Fosfatos/metabolismo
13.
Bioprocess Biosyst Eng ; 41(2): 157-170, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29052015

RESUMO

In its natural environment, the filamentous fungus Aspergillus niger grows on decaying fruits and plant material, thereby enzymatically degrading the lignocellulosic constituents (lignin, cellulose, hemicellulose, and pectin) into a mixture of mono- and oligosaccharides. To investigate the kinetics and stoichiometry of growth of this fungus on lignocellulosic sugars, we carried out batch cultivations on six representative monosaccharides (glucose, xylose, mannose, rhamnose, arabinose, and galacturonic acid) and a mixture of these. Growth on these substrates was characterized in terms of biomass yields, oxygen/biomass ratios, and specific conversion rates. Interestingly, in combination, some of the carbon sources were consumed simultaneously and some sequentially. With a previously developed protocol, a sequential chemostat cultivation experiment was performed on a feed mixture of the six substrates. We found that the uptake of glucose, xylose, and mannose could be described with a Michaelis-Menten-type kinetics; however, these carbon sources seem to be competing for the same transport systems, while the uptake of arabinose, galacturonic acid, and rhamnose appeared to be repressed by the presence of other substrates.


Assuntos
Aspergillus niger/crescimento & desenvolvimento , Lignina/metabolismo , Monossacarídeos/metabolismo , Cinética
14.
Microb Cell Fact ; 16(1): 90, 2017 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-28535757

RESUMO

BACKGROUND: The metabolic engineering of Saccharomyces cerevisiae for the production of succinic acid has progressed dramatically, and a series of high-producing hosts are available. At low cultivation pH and high titers, the product transport can become bidirectional, i.e. the acid is reentering the cell and is again exported or even catabolized. Here, a quantitative approach for the identification of product recycling fluxes is developed. RESULTS: The metabolic flux distributions at two time-points of the fermentation process were analyzed. 13C labeled succinic acid was added to the extracellular space and intracellular enrichments were measured and subsequently used for the estimation of metabolic fluxes. The labeling was introduced by a labeling switch experiment, leading to an immediate labeling of about 85% of the acid while keeping the total acid concentration constant. Within 100 s significant labeling enrichment of the TCA cycle intermediates fumarate, iso-citrate and α-ketoglutarate was observed, while no labeling was detected for malate and citrate. These findings suggest that succinic acid is rapidly exchanged over the cellular membrane and enters the oxidative TCA cycle. Remarkably, in the oxidative direction malate 13C enrichment was not detected, indicating that there is no flux going through this metabolite pool. Using flux modeling and thermodynamic assumptions on compartmentation it was concluded that malate must be predominantly cytosolic while fumarate and iso-citrate were more dominant in the mitochondria. CONCLUSIONS: Adding labeled product without changing the extracellular environment allowed to quantify intracellular metabolic fluxes under high producing conditions and identify product degradation cycles. In the specific case of succinic acid production, compartmentation was found to play a major role, i.e. the presence of metabolic activity in two different cellular compartments lead to intracellular product degradation reducing the yield. We also observed that the flux from glucose to succinic acid branches at two points in metabolism: (1) At the level of pyruvate, and (2) at cytosolic malate which was not expected.


Assuntos
Citoplasma/metabolismo , Análise do Fluxo Metabólico , Saccharomyces cerevisiae/metabolismo , Ácido Succínico/metabolismo , Isótopos de Carbono , Ciclo do Ácido Cítrico , Citoplasma/química , Fermentação , Fumaratos/metabolismo , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Malatos/metabolismo , Engenharia Metabólica/métodos , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/citologia
15.
Biotechnol Bioeng ; 113(4): 817-29, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26444867

RESUMO

An aerobic succinate-producing Escherichia coli mutant was compared to its wild-type by quantitatively analyzing both the metabolome and fluxome, during glucose-limited steady-state and succinate excess dynamic conditions, in order to identify targets for further strain engineering towards more efficient succinate production. The mutant had four functional mutations under the conditions investigated: increased expression of a succinate exporter (DcuC), deletion of a succinate importer (Dct), deletion of succinate dehydrogenase (SUCDH) and expression of a PEP carboxylase (PPC) with increased capacity due to a point mutation. The steady-state and dynamic patterns of the intracellular metabolite levels and fluxes in response to changes were used to locate the quantitative differences in the physiology/metabolism of the mutant strain. Unexpectedly the mutant had a higher energy efficiency, indicated by a much lower rate of oxygen consumption, under glucose-limited conditions, caused by the deletion of the transcription factors IclR and ArcA. Furthermore the mutant had a much lower uptake capacity for succinate (26-fold) and oxygen (17-fold under succinate excess) compared to the wild-type strain. The mutant strain produced 7.9 mmol.CmolX(-1).h(-1) succinate during chemostat cultivation, showing that the choice of the applied genetic modifications was a successful strategy. Furthermore, the applied genetic modifications resulted in multiple large changes in metabolite levels (FBP, pyruvate, 6PG, NAD(+) /NADH ratio, α-ketogluarate) corresponding to large changes in fluxes. Compared to the wild-type a considerable flux shift occurred from the tricarboxylic acid (TCA) cycle to the oxidative part of the pentose phosphate pathway, including an inversion of the pyruvate kinase flux. The mutant responded very differently to excess of succinate, with a remarkable possible reversal of the TCA cycle. The mutant and the wild-type both showed homeostatic behaviour with respect to the energy charge. In contrast, large changes in redox ratios (NAD(+) /NADH) occurred in the wild-type, while the mutant showed even larger changes. This large redox change can be associated to the reversal of flux directions. The observed large flexibility in the central metabolism following genetic (deletions) and environmental (substrate excess) perturbations of the mutant, indicates that introducing a more efficient succinate exporter could result in an even higher succinate production rate.


Assuntos
Escherichia coli/metabolismo , Análise do Fluxo Metabólico , Metaboloma , Ácido Succínico/metabolismo , Aerobiose , Escherichia coli/genética , Mutação
16.
Yeast ; 33(4): 145-61, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26683700

RESUMO

Currently, research is being focused on the industrial-scale production of fumaric acid and other relevant organic acids from renewable feedstocks via fermentation, preferably at low pH for better product recovery. However, at low pH a large fraction of the extracellular acid is present in the undissociated form, which is lipophilic and can diffuse into the cell. There have been no studies done on the impact of high extracellular concentrations of fumaric acid under aerobic conditions in S. cerevisiae, which is a relevant issue to study for industrial-scale production. In this work we studied the uptake and metabolism of fumaric acid in S. cerevisiae in glucose-limited chemostat cultures at a cultivation pH of 3.0 (pH < pK). Steady states were achieved with different extracellular levels of fumaric acid, obtained by adding different amounts of fumaric acid to the feed medium. The experiments were carried out with the wild-type S. cerevisiae CEN.PK 113-7D and an engineered S. cerevisiae ADIS 244 expressing a heterologous dicarboxylic acid transporter (DCT-02) from Aspergillus niger, to examine whether it would be capable of exporting fumaric acid. We observed that fumaric acid entered the cells most likely via passive diffusion of the undissociated form. Approximately two-thirds of the fumaric acid in the feed was metabolized together with glucose. From metabolic flux analysis, an increased ATP dissipation was observed only at high intracellular concentrations of fumarate, possibly due to the export of fumarate via an ABC transporter. The implications of our results for the industrial-scale production of fumaric acid are discussed.


Assuntos
Fumaratos/metabolismo , Glucose/metabolismo , Saccharomyces cerevisiae/metabolismo , Aerobiose , Ração Animal/análise , Antibacterianos/metabolismo , Aspergillus niger/química , Biomassa , Reatores Biológicos , Membrana Celular/metabolismo , Transportadores de Ácidos Dicarboxílicos/genética , Transportadores de Ácidos Dicarboxílicos/metabolismo , Ácidos Dicarboxílicos/metabolismo , Concentração de Íons de Hidrogênio , Malatos/metabolismo , Oxigênio/metabolismo , Permeabilidade , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Ácido Succínico/metabolismo
17.
Metab Eng ; 32: 155-173, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26476338

RESUMO

In this study we combined experimentation with mathematical modeling to unravel the in vivo kinetic properties of the enzymes and transporters of the penicillin biosynthesis pathway in a high yielding Penicillium chrysogenum strain. The experiment consisted of a step response experiment with the side chain precursor phenyl acetic acid (PAA) in a glucose-limited chemostat. The metabolite data showed that in the absence of PAA all penicillin pathway enzymes were expressed, leading to the production of a significant amount of 6-aminopenicillanic acid (6APA) as end product. After the stepwise perturbation with PAA, the pathway produced PenG within seconds. From the extra- and intracellular metabolite measurements, hypotheses for the secretion mechanisms of penicillin pathway metabolites were derived. A dynamic model of the penicillin biosynthesis pathway was then constructed that included the formation and transport over the cytoplasmic membrane of pathway intermediates, PAA and the product penicillin-G (PenG). The model parameters and changes in the enzyme levels of the penicillin biosynthesis pathway under in vivo conditions were simultaneously estimated using experimental data obtained at three different timescales (seconds, minutes, hours). The model was applied to determine changes in the penicillin pathway enzymes in time, calculate fluxes and analyze the flux control of the pathway. This led to a reassessment of the in vivo behavior of the pathway enzymes and in particular Acyl-CoA:Isopenicillin N Acyltransferase (AT).


Assuntos
Penicilinas/biossíntese , Fenilacetatos/metabolismo , Aciltransferases/biossíntese , Aciltransferases/genética , Algoritmos , Carbono/metabolismo , Meios de Cultura , Filtração , Glucose/metabolismo , Cinética , Redes e Vias Metabólicas , Modelos Biológicos , Ácido Penicilânico/análogos & derivados , Ácido Penicilânico/metabolismo , Proteínas de Ligação às Penicilinas/biossíntese , Proteínas de Ligação às Penicilinas/genética , Penicillium chrysogenum/genética , Penicillium chrysogenum/metabolismo
18.
Metabolomics ; 11(5): 1253-1264, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26366135

RESUMO

In view of the high citric acid production capacity of Aspergillus niger, it should be well suited as a cell factory for the production of other relevant acids as succinic, fumaric, itaconic and malic. Quantitative metabolomics is an important omics tool in a synthetic biology approach to develop A. niger for the production of these acids. Such studies require well defined and tightly controlled cultivation conditions and proper rapid sampling, sample processing and analysis methods. In this study we present the development of a chemostat for homogeneous steady state cultivation of A. niger, equipped with a new dedicated rapid sampling device. A quenching method for quantitative metabolomics in A. niger based on cold methanol was evaluated using balances and optimized with the aim of avoiding metabolite leakage during sample processing. The optimization was based on measurements of the intermediates of the glycolysis, TCA and PPP pathways and amino acids, using a balance approach. Leakage was found to be absent at -20 °C for a 40 % (v/v) methanol concentration in water. Under these conditions the average metabolite recovery was close to 100 %. When comparing A. niger and Penicillium chrysogenum metabolomes, under the same cultivation conditions, similar metabolite fingerprints were found in both fungi, except for the intracellular citrate level which is higher for A. niger.

19.
Microb Cell Fact ; 14: 133, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26369953

RESUMO

INTRODUCTION: Saccharomyces cerevisiae has become a popular host for production of non-native compounds. The metabolic pathways involved generally require a net input of energy. To maximize the ATP yield on sugar in S. cerevisiae, industrial cultivation is typically performed in aerobic, sugar-limited fed-batch reactors which, due to constraints in oxygen transfer and cooling capacities, have to be operated at low specific growth rates. Because intracellular levels of key metabolites are growth-rate dependent, slow growth can significantly affect biomass-specific productivity. Using an engineered Saccharomyces cerevisiae strain expressing a heterologous pathway for resveratrol production as a model energy-requiring product, the impact of specific growth rate on yeast physiology and productivity was investigated in aerobic, glucose-limited chemostat cultures. RESULTS: Stoichiometric analysis revealed that de novo resveratrol production from glucose requires 13 moles of ATP per mole of produced resveratrol. The biomass-specific production rate of resveratrol showed a strong positive correlation with the specific growth rate. At low growth rates a substantial fraction of the carbon source was invested in cellular maintenance-energy requirements (e.g. 27 % at 0.03 h(-1)). This distribution of resources was unaffected by resveratrol production. Formation of the by-products coumaric, phloretic and cinnamic acid had no detectable effect on maintenance energy requirement and yeast physiology in chemostat. Expression of the heterologous pathway led to marked differences in transcript levels in the resveratrol-producing strain, including increased expression levels of genes involved in pathways for precursor supply (e.g. ARO7 and ARO9 involved in phenylalanine biosynthesis). The observed strong differential expression of many glucose-responsive genes in the resveratrol producer as compared to a congenic reference strain could be explained from higher residual glucose concentrations and higher relative growth rates in cultures of the resveratrol producer. CONCLUSIONS: De novo resveratrol production by engineered S. cerevisiae is an energy demanding process. Resveratrol production by an engineered strain exhibited a strong correlation with specific growth rate. Since industrial production in fed-batch reactors typically involves low specific growth rates, this study emphasizes the need for uncoupling growth and product formation via energy-requiring pathways.


Assuntos
Engenharia Metabólica , Saccharomyces cerevisiae/metabolismo , Estilbenos/metabolismo , Biomassa , Reatores Biológicos , Regulação Fúngica da Expressão Gênica , Redes e Vias Metabólicas , RNA Mensageiro/metabolismo , Resveratrol , Saccharomyces cerevisiae/crescimento & desenvolvimento
20.
Methods Mol Biol ; 1191: 91-105, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25178786

RESUMO

Quantitative intracellular metabolite measurements are essential for systems biology and modeling of cellular metabolism. The MS-based quantification is error prone because (1) several sampling processing steps have to be performed, (2) the sample contains a complex mixture of partly compounds with the same mass and similar retention time, and (3) especially salts influence the ionization efficiency. Therefore internal standards are required, best for each measured compound. The use of labeled biomass, (13)C extract, is a valuable tool, reducing the standard deviations of intracellular concentration measurements significantly (especially regarding technical reproducibility). Using different platforms, i.e., LC-MS and GC-MS, a large number of different metabolites can be quantified (currently about 110).


Assuntos
Isótopos de Carbono , Análise do Fluxo Metabólico/métodos , Metabolômica/métodos , Isótopos de Carbono/metabolismo , Cromatografia Líquida/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Massas/métodos , Metabolômica/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...