Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Autoimmun ; 142: 103133, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37931331

RESUMO

B lineage cells are critically involved in ANCA-associated vasculitis (AAV), evidenced by alterations in circulating B cell subsets and beneficial clinical effects of rituximab (anti-CD20) therapy. This treatment renders a long-term, peripheral B cell depletion, but allows for the survival of long-lived plasma cells. Therefore, there is an unmet need for more reversible and full B lineage cell targeting approaches. To find potential novel therapeutic targets, RNA sequencing of CD27+ memory B cells of patients with active AAV was performed, revealing an upregulated NF-κB-associated gene signature. NF-κB signaling pathways act downstream of various B cell surface receptors, including the BCR, CD40, BAFFR and TLRs, and are essential for B cell responses. Here we demonstrate that novel pharmacological inhibitors of NF-κB inducing kinase (NIK, non-canonical NF-κB signaling) and inhibitor-of-κB-kinase-ß (IKKß, canonical NF-κB signaling) can effectively inhibit NF-κB signaling in B cells, whereas T cell responses were largely unaffected. Moreover, both inhibitors significantly reduced B cell proliferation, differentiation and production of antibodies, including proteinase-3 (PR3) autoantibodies, in B lineage cells of AAV patients. These findings indicate that targeting NF-κB, particularly NIK, may be an effective, novel B lineage cell targeted therapy for AAV and other autoimmune diseases with prominent B cell involvement.


Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos , NF-kappa B , Humanos , NF-kappa B/metabolismo , Transdução de Sinais , Linfócitos B/metabolismo , Quinase Induzida por NF-kappaB , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/tratamento farmacológico , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/metabolismo
2.
Front Immunol ; 14: 1188835, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37545512

RESUMO

Objective: Rheumatoid Arthritis (RA) is a progressive and systemic autoimmune disorder associated with chronic and destructive joint inflammation. The hallmarks of joint synovial inflammation are cellular proliferation, extensive neoangiogenesis and infiltration of immune cells, including macrophages. In vitro approaches simulating RA synovial tissue are crucial in preclinical and translational research to evaluate novel diagnostic and/or therapeutic markers. Two-dimensional (2D) settings present very limited in vivo physiological proximity as they cannot recapitulate cell-cell and cell-matrix interactions occurring in the three-dimensional (3D) tissue compartment. Here, we present the engineering of a spheroid-based model of RA synovial tissue which mimics 3D interactions between cells and pro-inflammatory mediators present in the inflamed synovium. Methods: Spheroids were generated by culturing RA fibroblast-like-synoviocytes (RAFLS), human umbilical vein endothelial cells (ECs) and monocyte-derived macrophages in a collagen-based 3D scaffold. The spheroids were cultured in the presence or absence of vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (bFGF) or RA synovial fluid (SF). Spheroid expansion and cell migration were quantified for all conditions using confocal microscopy and digital image analysis. Results: A novel approach using machine learning was developed to quantify spheroid outgrowth and used to reexamine the existing spheroid-based model of RA synovial angiogenesis consisting of ECs and RAFLS. A 2-fold increase in the spheroid outgrowth ratio was demonstrated upon VEGF/bFGF stimulation (p<0.05). The addition of macrophages within the spheroid structure (3.75x104 RAFLS, 7.5x104 ECs and 3.0x104 macrophages) resulted in good incorporation of the new cell type. The addition of VEGF/bFGF significantly induced spheroid outgrowth (p<0.05) in the new system. SF stimulation enhanced containment of macrophages within the spheroids. Conclusion: We present a novel spheroid based model consisting of RAFLS, ECs and macrophages that reflects the RA synovial tissue microenvironment. This model may be used to dissect the role of specific cell types in inflammatory responses in RA, to study specific signaling pathways involved in the disease pathogenesis and examine the effects of novel diagnostic (molecular imaging) and therapeutic compounds, including small molecule inhibitors and biologics.


Assuntos
Artrite Reumatoide , Fator A de Crescimento do Endotélio Vascular , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Cultivadas , Membrana Sinovial , Macrófagos/metabolismo , Inflamação/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Fatores de Crescimento do Endotélio Vascular/metabolismo , Fibroblastos/metabolismo
3.
Arthritis Rheumatol ; 75(7): 1152-1165, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36657110

RESUMO

OBJECTIVE: Spondyloarthritis (SpA) is characterized by pathologic osteogenesis, inflammation, and extensive angiogenesis in axial and peripheral tissues. Current therapies effectively target inflammation, but these therapies lack efficacy in preventing pathologic osteogenesis. Transgenic mice overexpressing transmembrane tumor necrosis factor (tmTNF-Tg mice) exhibit SpA-like features. We hypothesized that type H blood vessels, which are implicated in osteogenesis, are increased and contribute to pathology in this experimental SpA model. METHODS: We analyzed ankles, femora, and vertebrae of tmTNF-Tg mice and nontransgenic littermates and tmTNF-Tg mice on either a TNF receptor type I (TNFRI)-deficient or TNF receptor type II (TNFRII)-deficient background for osteogenesis, angiogenesis, and inflammation using advanced imaging technologies at various stages of disease. RESULTS: Compared to nontransgenic littermates, tmTNF-Tg mice exhibited an increase in vertebral type H vessels and osteoprogenitor cells in subchondral bone. These features of increased angiogenesis and osteogenesis were already present before onset of clinical disease symptoms. Type H vessels and osteoprogenitor cells were in close proximity to inflammatory lesions and ectopic lymphoid structures. The tmTNF-Tg mice also showed perivertebral ectopic type H vessels and osteogenesis, an increased number of vertebral transcortical vessels, and enhanced entheseal angiogenesis. In tmTNF-Tg mice crossed on a TNFRI- or TNFRII-deficient background, no clear reduction in type H vessels was shown, suggesting that type H vessel formation is not exclusively mediated via TNFRI or TNFRII. CONCLUSION: The contribution of type H vessels to pathologic osteogenesis in experimental SpA advances our knowledge of the pathophysiology of this disease and may also provide a novel opportunity for targeted intervention.


Assuntos
Osteogênese , Espondilartrite , Camundongos , Animais , Inflamação , Espondilartrite/tratamento farmacológico , Camundongos Transgênicos , Fator de Necrose Tumoral alfa
4.
Eur J Immunol ; 53(1): e2149675, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36314264

RESUMO

Autoimmune diseases are characterized by the recognition of self-antigens by the immune system, which leads to inflammation and tissue damage. B cells are directly and indirectly involved in the pathophysiology of autoimmunity, both via antigen-presentation to T cells and production of proinflammatory cytokines and/or autoantibodies. Consequently, B lineage cells have been identified as therapeutic targets in autoimmune diseases. B cell depleting strategies have proven beneficial in the treatment of rheumatoid arthritis (RA), systemic lupus erythematous (SLE), ANCA-associated vasculitis (AAV), multiple sclerosis (MS), and a wide range of other immune-mediated inflammatory diseases (IMIDs). However, not all patients respond to treatment or may not reach (drug-free) remission. Moreover, B cell depleting therapies do not always target all B cell subsets, such as short-lived and long-lived plasma cells. These cells play an active role in autoimmunity and in certain diseases their depletion would be beneficial to achieve disease remission. In the current review article, we provide an overview of novel strategies to target B lineage cells in autoimmune diseases, with the focus on rheumatic diseases. Both advanced therapies that have recently become available and more experimental treatments that may reach the clinic in the near future are discussed.


Assuntos
Artrite Reumatoide , Doenças Autoimunes , Humanos , Plasmócitos , Doenças Autoimunes/terapia , Linfócitos B , Autoimunidade , Autoanticorpos
5.
Int J Mol Sci ; 23(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35955550

RESUMO

This Special Issue focuses on the rapidly evolving field of immune-mediated inflammatory diseases (IMIDs) and the achievements that were made over the last 10 years [...].

6.
Autoimmun Rev ; 21(9): 103141, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35840039

RESUMO

Auto-immune regulator (AIRE) is a transcription factor that is mainly known for its crucial role in the thymus. Here, AIRE ensures central tolerance by promoting the expression of peripheral tissue antigens in thymic epithelial cells, which is essential for the negative selection of autoreactive T cells. Intriguingly, AIRE expressing cells have recently been identified in other tissues outside the thymus as well. However, the exact function of these extrathymic AIRE expressing cells (eTACs) remains largely enigmatic. Human eTACs are mainly found in secondary lymphoid tissues under homeostatic conditions, but are also found in pathologies such as the inflamed tissues of patients with autoimmune diseases and in various cancer tissues. eTACs have been demonstrated to express dendritic cell (DC)-like markers, such as MHCII, CD40 and CD127, but also CCR7, IDO and PD-L1. Interestingly, eTACs lack high expression of co-stimulatory molecules, such as CD80 or CD86. In mice, different types of peripheral AIRE expressing cells have been described, including cells with an innate lymphoid cell-like phenotype and antigen presenting cell (APC) function. These findings suggest that eTACs are APCs with the possibility to modulate or inhibit immune responses, which is confirmed by functional murine studies demonstrating the ability of eTACs to induce tolerance in autoreactive T cells. The potential immunomodulatory function of eTACs makes them promising targets to restore tolerance in autoimmunity or improve immunotherapy in cancer settings. Yet, this requires a better understanding of these cells and the molecular mechanisms involved. In this review we aim to summarize the current knowledge and understanding of eTACs, including their putative roles in health and disease.


Assuntos
Doenças Autoimunes , Neoplasias , Animais , Autoimunidade , Humanos , Tolerância Imunológica , Imunidade Inata , Linfócitos , Camundongos , Neoplasias/terapia , Timo
7.
Front Immunol ; 13: 860327, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35769477

RESUMO

Endothelial cells (ECs) are important contributors to inflammation in immune-mediated inflammatory diseases (IMIDs). In this study, we examined whether CD4+ memory T (Tm) cells can drive EC inflammatory responses. Human Tm cells produced ligands that induced inflammatory responses in human umbilical vein EC as exemplified by increased expression of inflammatory mediators including chemokines and adhesion molecules. NF-κB, a key regulator of EC activation, was induced by Tm cell ligands. We dissected the relative contribution of canonical and non-canonical NF-κB signaling to Tm induced EC responses using pharmacological small molecule inhibitors of IKKß (iIKKß) or NF-κB inducing kinase (iNIK). RNA sequencing revealed substantial overlap in IKKß and NIK regulated genes (n=549) that were involved in inflammatory and immune responses, including cytokines (IL-1ß, IL-6, GM-CSF) and chemokines (CXCL5, CXCL1). NIK regulated genes were more restricted, as 332 genes were uniquely affected by iNIK versus 749 genes by iIKKß, the latter including genes involved in metabolism, proliferation and leukocyte adhesion (VCAM-1, ICAM-1). The functional importance of NIK and IKKß in EC activation was confirmed by transendothelial migration assays with neutrophils, demonstrating stronger inhibitory effects of iIKKß compared to iNIK. Importantly, iIKKß - and to some extent iNIK - potentiated the effects of currently employed therapies for IMIDs, like JAK inhibitors and anti-IL-17 antibodies, on EC inflammatory responses. These data demonstrate that inhibition of NF-κB signaling results in modulation of Tm cell-induced EC responses and highlight the potential of small molecule NF-κB inhibitors as a novel treatment strategy to target EC inflammatory responses in IMIDs.


Assuntos
Células Endoteliais , NF-kappa B , Linfócitos T CD4-Positivos/metabolismo , Quimiocinas/metabolismo , Células Endoteliais/metabolismo , Humanos , Quinase I-kappa B/metabolismo , Células T de Memória , NF-kappa B/metabolismo , Transdução de Sinais
8.
Int J Mol Sci ; 23(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35216345

RESUMO

Soluble tumor necrosis factor (sTNF) is an important inflammatory mediator and essential for secondary lymphoid organ (SLO) development and function. However, the role of its transmembrane counterpart (tmTNF) in these processes is less well established. Here, the effects of tmTNF overxpression on SLO architecture and function were investigated using tmTNF-transgenic (tmTNF-tg) mice. tmTNF overexpression resulted in enlarged peripheral lymph nodes (PLNs) and spleen, accompanied by an increase in small splenic lymphoid follicles, with less well-defined primary B cell follicles and T cell zones. In tmTNF-tg mice, the spleen, but not PLNs, contained reduced germinal center (GC) B cell fractions, with low Ki67 expression and reduced dark zone characteristics. In line with this, smaller fractions of T follicular helper (Tfh) and T follicular regulatory (Tfr) cells were observed with a decreased Tfh:Tfr ratio. Moreover, plasma cell (PC) formation in the spleen of tmTNF-tg mice decreased and skewed towards IgA and IgM expression. Genetic deletion of TNFRI or -II resulted in a normalization of follicle morphology in the spleen of tmTNF-tg mice, but GC B cell and PC fractions remained abnormal. These findings demonstrate that tightly regulated tmTNF is important for proper SLO development and function, and that aberrations induced by tmTNF overexpression are site-specific and mediated via TNFRI and/or TNFRII signaling.


Assuntos
Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Baço/metabolismo , Animais , Linfócitos B/metabolismo , Centro Germinativo/metabolismo , Imunoglobulina A/metabolismo , Imunoglobulina M/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Plasmócitos/metabolismo , Transdução de Sinais/fisiologia , Células T Auxiliares Foliculares/metabolismo , Linfócitos T Reguladores/metabolismo
9.
J Immunol ; 207(9): 2337-2346, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34561228

RESUMO

TNF is important in immune-mediated inflammatory diseases, including spondyloarthritis (SpA). Transgenic (tg) mice overexpressing transmembrane TNF (tmTNF) develop features resembling human SpA. Furthermore, both tmTNF tg mice and SpA patients develop ectopic lymphoid aggregates, but it is unclear whether these contribute to pathology. Therefore, we characterized the lymphoid aggregates in detail and studied potential alterations in the B and T cell lineage in tmTNF tg mice. Lymphoid aggregates developed in bone marrow (BM) of vertebrae and near the ankle joints prior to the first SpA features and displayed characteristics of ectopic lymphoid structures (ELS) including presence of B cells, T cells, germinal centers, and high endothelial venules. Detailed flow cytometric analyses demonstrated more germinal center B cells with increased CD80 and CD86 expression, along with significantly more T follicular helper, T follicular regulatory, and T regulatory cells in tmTNF tg BM compared with non-tg controls. Furthermore, tmTNF tg mice exhibited increased IgA serum levels and significantly more IgA+ plasma cells in the BM, whereas IgA+ plasma cells in the gut were not significantly increased. In tmTNF tg × TNF-RI-/- mice, ELS were absent, consistent with reduced disease symptoms, whereas in tmTNF tg × TNF-RII-/- mice, ELS and clinical symptoms were still present. Collectively, these data show that tmTNF overexpression in mice results in osteitis and ELS formation in BM, which may account for the increased serum IgA levels that are also observed in human SpA. These effects are mainly dependent on TNF-RI signaling and may underlie important aspects of SpA pathology.


Assuntos
Linfócitos B/imunologia , Medula Óssea/metabolismo , Centro Germinativo/imunologia , Proteínas de Membrana/metabolismo , Osteíte/imunologia , Espondilite Anquilosante/imunologia , Linfócitos T/imunologia , Estruturas Linfoides Terciárias/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Medula Óssea/patologia , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Modelos Animais de Doenças , Humanos , Imunoglobulina A/metabolismo , Proteínas de Membrana/genética , Camundongos , Transdução de Sinais , Fator de Necrose Tumoral alfa/genética
10.
Front Immunol ; 12: 699336, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34234786

RESUMO

Whole mount tissue immunolabeling and imaging of complete organs has tremendous benefits in characterizing organ morphology. Here, we present a straightforward method for immunostaining, clearing and imaging of whole murine peripheral lymph nodes (PLNs) for detailed analysis of their architecture and discuss all procedures in detail in a step-by-step approach. Given the importance of tumor necrosis factor receptor (TNFR) signaling in development of PLNs we used TNFRI-/- and TNFRII-/- mice models as proof-of-concept for this technique by visualizing and analyzing structural changes in PLN B cell clusters and high endothelial venules (HEVs). Samples were subjected to de- and rehydration with methanol, labeled with antibodies for B cells, T cells and high endothelial venules (HEVs) and optically cleared using benzyl alcohol-benzyl benzoate. Imaging was done using LaVision light sheet microscope and analysis with Imaris software. Using these techniques, we confirmed previous findings that TNFRI signaling is essential for formation of individual B cell clusters. In addition, Our data suggest that TNFRII signaling is also to some extent involved in this process as TNFRII-/- PLNs had a B cell cluster morphology reminiscent of TNFRI-/- PLNs. Moreover, visualization and objective quantification of the complete PLN high endothelial vasculature unveiled reduced volume, length and branching points of HEVs in TNFRI-/- PLNs, revealing an earlier unrecognized contribution of TNFRI signaling in HEV morphology. Together, these results underline the potential of whole mount tissue staining and advanced imaging techniques to unravel even subtle changes in lymphoid tissue architecture.


Assuntos
Técnicas Histológicas , Imageamento Tridimensional/métodos , Linfonodos/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Animais , Linfócitos B , Processamento de Imagem Assistida por Computador/métodos , Vasos Linfáticos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
11.
Arthritis Res Ther ; 23(1): 157, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34082814

RESUMO

BACKGROUND: Chronic synovial inflammation is an important hallmark of inflammatory arthritis, but the cells and mechanisms involved are incompletely understood. Previously, we have shown that CCR6+ memory T-helper (memTh) cells and synovial fibroblasts (SF) activate each other in a pro-inflammatory feedforward loop, which potentially drives persistent synovial inflammation in inflammatory arthritis. However, the CCR6+ memTh cells are a heterogeneous population, containing Th17/Th22 and Th17.1 cells. Currently, it is unclear which of these subpopulations drive SF activation and how they should be targeted. In this study, we examined the individual contribution of these CCR6+ memTh subpopulations to SF activation and examined ways to regulate their function. METHODS: Th17/Th22 (CXCR3-CCR4+), Th17.1 (CXCR3+CCR4-), DP (CXCR3+CCR4+), and DN (CXCR3-CCR4-) CCR6+ memTh, cells sorted from PBMC of healthy donors or treatment-naïve early rheumatoid arthritis (RA) patients, were cocultured with SF from RA patients with or without anti-IL17A, anti-IFNγ, or 1,25(OH)2D3. Cultures were analyzed by RT-PCR, ELISA, or flow cytometry. RESULTS: Th17/Th22, Th17.1, DP, and DN cells equally express RORC but differ in production of TBX21 and cytokines like IL-17A and IFNγ. Despite these differences, all the individual CCR6+ memTh subpopulations, both from healthy individuals and RA patients, were more potent in activating SF than the classical Th1 cells. SF activation was partially inhibited by blocking IL-17A, but not by inhibiting IFNγ or TBX21. However, active vitamin D inhibited the pathogenicity of all subpopulations leading to suppression of SF activation. CONCLUSIONS: Human CCR6+ memTh cells contain several subpopulations that equally express RORC but differ in TBX21, IFNγ, and IL-17A expression. All individual Th17 subpopulations are more potent in activating SF than classical Th1 cells in an IFNγ-independent manner. Furthermore, our data suggest that IL-17A is not dominant in this T cell-SF activation loop but that a multiple T cell cytokine inhibitor, such as 1,25(OH)2D3, is able to suppress CCR6+ memTh subpopulation-driven SF activation.


Assuntos
Citocinas , Receptores CCR6 , Fibroblastos , Humanos , Leucócitos Mononucleares , Células Th17
12.
Int J Mol Sci ; 23(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35008813

RESUMO

Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a systemic autoimmune disease that affects small sized blood vessels and can lead to serious complications in the lungs and kidneys. The prominent presence of ANCA autoantibodies in this disease implicates B cells in its pathogenesis, as these are the precursors of the ANCA-producing plasma cells (PCs). Further evidence supporting the potential role of B lineage cells in vasculitis are the increased B cell cytokine levels and the dysregulated B cell populations in patients. Confirmation of the contribution of B cells to pathology arose from the beneficial effect of anti-CD20 therapy (i.e., rituximab) in AAV patients. These anti-CD20 antibodies deplete circulating B cells, which results in amelioration of disease. However, not all patients respond completely, and this treatment does not target PCs, which can maintain ANCA production. Hence, it is important to develop more specific therapies for AAV patients. Intracellular signalling pathways may be potential therapeutic targets as they can show (disease-specific) alterations in certain B lineage cells, including pathogenic B cells, and contribute to differentiation and survival of PCs. Preliminary data on the inhibition of certain signalling molecules downstream of receptors specific for B lineage cells show promising therapeutic effects. In this narrative review, B cell specific receptors and their downstream signalling molecules that may contribute to pathology in AAV are discussed, including the potential to therapeutically target these pathways.


Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/imunologia , Linfócitos B/imunologia , Linhagem da Célula/imunologia , Animais , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/terapia , Quimiocinas/metabolismo , Humanos , Modelos Biológicos , Transdução de Sinais
13.
Front Immunol ; 10: 1504, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379807

RESUMO

Autoimmune diseases are characterized by an aberrantly activated immune system, resulting in tissue damage and functional disability in patients. An important therapeutic goal is to restore the deregulated immunological balance between pro- and anti-inflammatory T cells. This imbalance is illustrated by elevated levels and activity of memory Th17 cell populations, such as Th17, Th1/Th17, and Th17.1 cells, in various autoimmune diseases. These cells are characterized by the chemokine receptor CCR6, RORC expression and production of IL-17A, IFNγ, and TNFα. Using rheumatoid arthritis (RA) as a model of autoimmune disease, we here demonstrate that pro-inflammatory memory CCR6+ Th cells can switch into anti-inflammatory cells with regulatory capacity using the active vitamin D metabolite 1,25(OH)2D3. Memory CCR6+ Th cells, excluding Tregs, were sorted from healthy controls or treatment-naïve patients with early rheumatoid arthritis (RA) and cultured with or without 1,25(OH)2D3. Treatment with 1,25(OH)2D3 inhibited pro-inflammatory cytokines such as IL-17A, IL-17F, IL-22 and IFNγ in memory CCR6+ Th cells from both healthy controls and RA patients. This was accompanied by induction of anti-inflammatory factors, including IL-10 and CTLA4. Interestingly, these formerly pathogenic cells suppressed proliferation of autologous CD3+ T cells similar to classical Tregs. Importantly, the modulated memory cells still migrated toward inflammatory milieus in vitro, modeled by RA synovial fluid, and retained their suppressive capacity in this environment. These data show the potential to reset the pathogenic profile of human memory Th cells into non-pathogenic cells with regulatory capacity.


Assuntos
Anti-Inflamatórios/imunologia , Memória Imunológica/imunologia , Células Th17/imunologia , Vitamina D/imunologia , Adulto , Artrite Reumatoide/imunologia , Doenças Autoimunes/imunologia , Complexo CD3/imunologia , Células Cultivadas , Feminino , Humanos , Interleucinas/imunologia , Masculino , Pessoa de Meia-Idade , Receptores CCR6/imunologia , Fator de Necrose Tumoral alfa/imunologia
14.
J Cell Sci ; 132(7)2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30837284

RESUMO

NF-κB-inducing kinase (NIK; also known as MAP3K14) is a central regulator of non-canonical NF-κB signaling in response to stimulation of TNF receptor superfamily members, such as the lymphotoxin-ß receptor (LTßR), and is implicated in pathological angiogenesis associated with chronic inflammation and cancer. Here, we identify a previously unrecognized role of the LTßR-NIK axis during inflammatory activation of human endothelial cells (ECs). Engagement of LTßR-triggered canonical and non-canonical NF-κB signaling promoted expression of inflammatory mediators and adhesion molecules, and increased immune cell adhesion to ECs. Sustained LTßR-induced inflammatory activation of ECs was NIK dependent, but independent of p100, indicating that the non-canonical arm of NF-κB is not involved. Instead, prolonged activation of canonical NF-κB signaling, through the interaction of NIK with IκB kinase α and ß (also known as CHUK and IKBKB, respectively), was required for the inflammatory response. Endothelial inflammatory activation induced by synovial fluid from rheumatoid arthritis patients was significantly reduced by NIK knockdown, suggesting that NIK-mediated alternative activation of canonical NF-κB signaling is a key driver of pathological inflammatory activation of ECs. Targeting NIK could thus provide a novel approach for treating chronic inflammatory diseases.


Assuntos
Células Endoteliais/metabolismo , Receptor beta de Linfotoxina/metabolismo , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Linhagem Celular , Células Cultivadas , Endotélio/metabolismo , Regulação da Expressão Gênica , Humanos , NF-kappa B/genética , Neovascularização Patológica/metabolismo , Proteínas Serina-Treonina Quinases/genética , Quinase Induzida por NF-kappaB
15.
Eur Respir J ; 51(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29449421

RESUMO

The lung-draining mediastinal lymph nodes (MLNs) are currently widely used to diagnose sarcoidosis. We previously reported that T-helper (Th) 17.1 cells are responsible for the exaggerated interferon-γ production in sarcoidosis lungs. In this study, we aimed to investigate 1) whether Th17.1 cells are also increased in the MLNs of sarcoidosis patients and 2) whether frequencies of the Th17.1 cells at diagnosis may correlate with disease progression.MLN cells from treatment-naive pulmonary sarcoidosis patients (n=17) and healthy controls (n=22) and peripheral blood mononuclear cells (n=34) and bronchoalveolar lavage fluid (BALF) (n=36) from sarcoidosis patients were examined for CD4+ T-cell subset proportions using flow cytometry.Higher proportions of Th17.1 cells were detected in sarcoidosis MLNs than in control MLNs. Higher Th17.1 cell proportions were found in sarcoidosis BALF compared with MLNs and peripheral blood. Furthermore, BALF Th17.1 cell proportions were significantly higher in patients developing chronic disease than in patients undergoing resolution within 2 years of clinical follow-up.These data suggest that Th17.1 cell proportions in pulmonary sarcoidosis can be evaluated as a diagnostic and/or prognostic marker in clinical practice and could serve as a new therapeutic target.


Assuntos
Pulmão/metabolismo , Linfonodos/patologia , Mediastino/patologia , Sarcoidose Pulmonar/metabolismo , Células Th17/citologia , Adolescente , Adulto , Idoso , Biópsia por Agulha Fina , Líquido da Lavagem Broncoalveolar , Estudos de Casos e Controles , Feminino , Citometria de Fluxo , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Fenótipo , Adulto Jovem
16.
Front Immunol ; 9: 2902, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30692988

RESUMO

Expression of the Autoimmune regulator (AIRE) outside of the thymus has long been suggested in both humans and mice, but the cellular source in humans has remained undefined. Here we identify AIRE expression in human tonsils and extensively analyzed these "extra-thymic AIRE expressing cells" (eTACs) using combinations of flow cytometry, CyTOF and single cell RNA-sequencing. We identified AIRE+ cells as dendritic cells (DCs) with a mature and migratory phenotype including high levels of antigen presenting molecules and costimulatory molecules, and specific expression of CD127, CCR7, and PDL1. These cells also possessed the ability to stimulate and re-stimulate T cells and displayed reduced responses to toll-like receptor (TLR) agonists compared to conventional DCs. While expression of AIRE was enriched within CCR7+CD127+ DCs, single-cell RNA sequencing revealed expression of AIRE to be transient, rather than stable, and associated with the differentiation to a mature phenotype. The role of AIRE in central tolerance induction within the thymus is well-established, however our study shows that AIRE expression within the periphery is not associated with an enriched expression of tissue-restricted antigens (TRAs). This unexpected finding, suggestive of wider functions of AIRE, may provide an explanation for the non-autoimmune symptoms of APECED patients who lack functional AIRE.


Assuntos
Células Dendríticas/imunologia , Tonsila Palatina/citologia , Fatores de Transcrição/metabolismo , Antígeno B7-H1/metabolismo , Comunicação Celular/imunologia , Células Cultivadas , Pré-Escolar , Células Dendríticas/metabolismo , Humanos , Lactente , Recém-Nascido , Subunidade alfa de Receptor de Interleucina-7/metabolismo , Ativação Linfocitária , Tonsila Palatina/imunologia , Tonsila Palatina/metabolismo , Cultura Primária de Células , Receptores CCR7/metabolismo , Linfócitos T/imunologia , Fatores de Transcrição/imunologia , Proteína AIRE
17.
J Autoimmun ; 87: 69-81, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29254845

RESUMO

T helper 17 (Th17) cells are important mediators of immune responses against extracellular bacteria and fungi, and as such play critical regulatory roles in maintaining mucosal homeostasis. Conversely, Th17 cells and their effector molecules interleukin 17A (IL-17A), IL-17F, interferon (IFN)γ, tumor necrosis factor (TNF)α, and granulocyte-macrophage colony-stimulating factor (GM-CSF) are implicated in the pathology of rheumatoid arthritis (RA). Interactions between Th17 cells and other immune cells or stromal cells that are present in the synovial tissue during the earliest phases of the disease, may eventually lead to chronic inflammation, irreversible cartilage degradation and bone erosions. Recent evidence points towards Th17 cell plasticity as an essential contributing process in RA pathology, since Th17 cells are able to adopt a pathogenic phenotype under the influence of environmental, inflammatory and genetic factors. A remarkable feature of this pathogenic Th17 cell phenotype is the high production of GM-CSF and TNFα and the co-appearance of Th1 cell characteristics, such as transcription factor T-box 21 (T-bet) and IFNγ expression. Recently, much progress has been made in unravelling the mechanisms underlying Th17 cell plasticity and pathogenicity. Of interest, many of the environmental and inflammatory factors associated with RA pathology, such as pro-inflammatory mediators and cytokines, microbiome dysbiosis, metabolism and diet, obesity, vitamins, steroids and hormones are linked to the development of pathogenic Th17 cells. Moreover proteins encoded by established genetic risk factors for RA including CCR6, CD226, CSF2, EOMES, ETS1, GATA3, IL2, IL6R, IL23R, IKZF3, IRAK1, IRF4, IRF8, PRKCQ, PRDM1, RBPJ, RUNX1 and TAGAP are directly involved in Th17 cell differentiation and/or function. This review provides a detailed overview of the molecular mechanisms involved in the heterogeneity and pathogenicity of Th17 cells in the context of autoimmune diseases, with a focus on RA. Understanding these mechanisms creates great potential to identify and select novel therapeutic targets which could improve current therapies or lead to development of new treatment strategies in RA.


Assuntos
Artrite Reumatoide/imunologia , Plasticidade Celular , Interleucina-17/metabolismo , Subpopulações de Linfócitos T/imunologia , Células Th17/imunologia , Animais , Artrite Reumatoide/genética , Diferenciação Celular , Citocinas/metabolismo , Progressão da Doença , Predisposição Genética para Doença , Humanos , Mediadores da Inflamação/metabolismo , Camundongos , Risco , Fatores de Transcrição/genética
18.
Arthritis Rheumatol ; 69(6): 1313-1324, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28141917

RESUMO

OBJECTIVE: Bruton's tyrosine kinase (BTK) transmits crucial survival signals from the B cell receptor (BCR) in B cells. Pharmacologic BTK inhibition effectively diminishes disease symptoms in mouse models of autoimmunity; conversely, transgenic BTK overexpression induces systemic autoimmunity in mice. We undertook this study to investigate BTK expression and activity in human B cells in the context of autoimmune disease. METHODS: Using intracellular flow cytometry, we quantified BTK expression and phosphorylation in subsets of peripheral blood B cells from 30 patients with rheumatoid arthritis (RA), 26 patients with primary Sjögren's syndrome (SS), and matched healthy controls. RESULTS: In circulating B cells, BTK protein expression levels correlated with BTK phosphorylation. BTK expression was up-regulated upon BCR stimulation in vitro and was significantly higher in CD27+ memory B cells than in CD27-IgD+ naive B cells. Importantly, BTK protein and phospho-BTK were significantly increased in B cells from anti-citrullinated protein antibody (ACPA)-positive RA patients but not in B cells from ACPA-negative RA patients. BTK was increased both in naive B cells and in memory B cells and correlated with frequencies of circulating CCR6+ Th17 cells. Likewise, BTK protein was increased in B cells from a major fraction of patients with primary SS and correlated with serum rheumatoid factor levels and parotid gland T cell infiltration. Interestingly, targeting T cell activation in patients with primary SS using the CTLA-4Ig fusion protein abatacept restored BTK protein expression in B cells to normal levels. CONCLUSION: These data indicate that autoimmune disease in humans is characterized by enhanced BTK activity, which is linked not only to autoantibody formation but also to T cell activity.


Assuntos
Artrite Reumatoide/enzimologia , Linfócitos B/enzimologia , Proteínas Tirosina Quinases/metabolismo , Síndrome de Sjogren/enzimologia , Tirosina Quinase da Agamaglobulinemia , Estudos de Casos e Controles , Humanos , Ativação Linfocitária , Fosforilação
19.
Eur J Immunol ; 46(6): 1404-14, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27067635

RESUMO

Interleukin 22 (IL-22) expression is associated with increased joint destruction and disease progression in rheumatoid arthritis (RA). Although IL-22 is considered a pro-inflammatory cytokine, its mechanism of action in RA remains incompletely understood. Here, we used the collagen-induced arthritis model in IL-22 deficient (IL-22(-/-) ) mice to study the role of IL-22 in RA. In spite of normal disease incidence, disease severity is significantly diminished in IL-22(-/-) mice. Moreover, pathogenicity of Th17 cells and development and function of B cells are unaffected. In contrast, splenic plasma cells, as well as serum autoantibody titers, are reduced in the absence of IL-22. At the peak of disease, germinal centers (GCs) are severely reduced in the spleens of IL-22(-/-) mice, correlating with a decline in GC B-cell numbers. Within the GC, we identified IL-22R1 expressing follicular dendritic cell-like stromal cells. Human lymphoid stromal cells respond to IL-22 ex vivo by inducing transcription of CXCL12 and CXCL13. We therefore postulate IL-22 as an important enhancer of the GC reaction, maintaining chemokine levels for the persistence of GC reactions, essential for the production of autoantibody-secreting plasma cells. Blocking IL-22 might therefore prevent immune-complex deposition and destruction of joints in RA patients.


Assuntos
Formação de Anticorpos/genética , Formação de Anticorpos/imunologia , Artrite Experimental/etiologia , Autoanticorpos/imunologia , Interleucinas/deficiência , Animais , Especificidade de Anticorpos/imunologia , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Células Cultivadas , Quimiocinas/genética , Quimiocinas/metabolismo , Técnicas de Cocultura , Modelos Animais de Doenças , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Knockout , Plasmócitos/imunologia , Plasmócitos/metabolismo , Receptores de Interleucina/genética , Receptores de Interleucina/metabolismo , Índice de Gravidade de Doença , Células Estromais/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Interleucina 22
20.
Front Immunol ; 7: 697, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28163705

RESUMO

Over the last three decades, it has become clear that the role of vitamin D goes beyond the regulation of calcium homeostasis and bone health. An important extraskeletal effect of vitamin D is the modulation of the immune system. In the context of autoimmune diseases, this is illustrated by correlations of vitamin D status and genetic polymorphisms in the vitamin D receptor with the incidence and severity of the disease. These correlations warrant investigation into the potential use of vitamin D in the treatment of patients with autoimmune diseases. In recent years, several clinical trials have been performed to investigate the therapeutic value of vitamin D in multiple sclerosis, rheumatoid arthritis, Crohn's disease, type I diabetes, and systemic lupus erythematosus. Additionally, a second angle of investigation has focused on unraveling the molecular pathways used by vitamin D in order to find new potential therapeutic targets. This review will not only provide an overview of the clinical trials that have been performed but also discuss the current knowledge about the molecular mechanisms underlying the immunomodulatory effects of vitamin D and how these advances can be used in the treatment of autoimmune diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...