Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Infect Dis ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573164

RESUMO

Dysbiosis of the vaginal microbiome poses a serious risk for sexual HIV-1 transmission. Prevotella spp. are abundant during vaginal dysbiosis and associated with enhanced HIV-1 susceptibility; however, underlying mechanisms remain unclear. Here, we investigated the direct effect of vaginal bacteria on HIV-1 susceptibility of vaginal CD4+ T cells. Notably, pre-exposure to Prevotella timonensis enhanced HIV-1 uptake by vaginal T cells, leading to increased viral fusion and enhanced virus production. Pre-exposure to antiretroviral inhibitors abolished Prevotella timonensis-enhanced infection. Hence, our study shows that the vaginal microbiome directly affects mucosal CD4+ T cell susceptibility, emphasising importance of vaginal dysbiosis diagnosis and treatment.

2.
EMBO J ; 43(7): 1135-1163, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38418557

RESUMO

Dysregulated immune responses contribute to the excessive and uncontrolled inflammation observed in severe COVID-19. However, how immunity to SARS-CoV-2 is induced and regulated remains unclear. Here, we uncover the role of the complement system in the induction of innate and adaptive immunity to SARS-CoV-2. Complement rapidly opsonizes SARS-CoV-2 particles via the lectin pathway. Complement-opsonized SARS-CoV-2 efficiently induces type-I interferon and pro-inflammatory cytokine responses via activation of dendritic cells, which are inhibited by antibodies against the complement receptors (CR) 3 and 4. Serum from COVID-19 patients, or monoclonal antibodies against SARS-CoV-2, attenuate innate and adaptive immunity induced by complement-opsonized SARS-CoV-2. Blocking of CD32, the FcγRII antibody receptor of dendritic cells, restores complement-induced immunity. These results suggest that opsonization of SARS-CoV-2 by complement is involved in the induction of innate and adaptive immunity to SARS-CoV-2 in the acute phase of infection. Subsequent antibody responses limit inflammation and restore immune homeostasis. These findings suggest that dysregulation of the complement system and FcγRII signaling may contribute to severe COVID-19.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Anticorpos Antivirais , Proteínas do Sistema Complemento , Inflamação , Imunidade Inata
3.
J Invest Dermatol ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37979773

RESUMO

Dengue virus (DENV) is the most disease-causative flavivirus worldwide. DENV as a mosquito-borne virus infects human hosts through the skin; however, the initial target cells in the skin remain unclear. In this study, we have investigated whether epidermal Langerhans cells (LCs) play a role in DENV acquisition and dissemination. We have used a human epidermal ex vivo infection model as well as isolated LCs to investigate infection by DENV. Notably, both immature and mature LCs were permissive to DENV infection in vitro and ex vivo, and infection was dependent on C-type lectin receptor langerin because blocking antibodies against langerin significantly reduced DENV infection in vitro and ex vivo. DENV-infected LCs efficiently transmitted DENV to target cells such as dendritic cells. Moreover, DENV exposure increased the migration of LCs from epidermal explants. These results strongly suggest that DENV targets epidermal LCs for infection and dissemination in the human host. These findings could provide potential drug targets to combat the early stage of DENV infection.

4.
PLoS Pathog ; 19(10): e1011735, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37844099

RESUMO

SARS-CoV-2 causes COVID-19, an infectious disease with symptoms ranging from a mild cold to severe pneumonia, inflammation, and even death. Although strong inflammatory responses are a major factor in causing morbidity and mortality, superinfections with bacteria during severe COVID-19 often cause pneumonia, bacteremia and sepsis. Aberrant immune responses might underlie increased sensitivity to bacteria during COVID-19 but the mechanisms remain unclear. Here we investigated whether SARS-CoV-2 directly suppresses immune responses to bacteria. We studied the functionality of human dendritic cells (DCs) towards a variety of bacterial triggers after exposure to SARS-CoV-2 Spike (S) protein and SARS-CoV-2 primary isolate (hCoV-19/Italy). Notably, pre-exposure of DCs to either SARS-CoV-2 S protein or a SARS-CoV-2 isolate led to reduced type I interferon (IFN) and cytokine responses in response to Toll-like receptor (TLR)4 agonist lipopolysaccharide (LPS), whereas other TLR agonists were not affected. SARS-CoV-2 S protein interacted with the C-type lectin receptor DC-SIGN and, notably, blocking DC-SIGN with antibodies restored type I IFN and cytokine responses to LPS. Moreover, blocking the kinase Raf-1 by a small molecule inhibitor restored immune responses to LPS. These results suggest that SARS-CoV-2 modulates DC function upon TLR4 triggering via DC-SIGN-induced Raf-1 pathway. These data imply that SARS-CoV-2 actively suppresses DC function via DC-SIGN, which might account for the higher mortality rates observed in patients with COVID-19 and bacterial superinfections.


Assuntos
COVID-19 , Superinfecção , Humanos , SARS-CoV-2/metabolismo , Receptor 4 Toll-Like/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , COVID-19/metabolismo , Lectinas Tipo C/metabolismo , Citocinas/metabolismo , Células Dendríticas
6.
Sci Rep ; 13(1): 8851, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37258559

RESUMO

Nebulization of mRNA therapeutics can be used to directly target the respiratory tract. A promising prospect is that mucosal administration of lipid nanoparticle (LNP)-based mRNA vaccines may lead to a more efficient protection against respiratory viruses. However, the nebulization process can rupture the LNP vehicles and degrade the mRNA molecules inside. Here we present a novel nebulization method able to preserve substantially the integrity of vaccines, as tested with two SARS-CoV-2 mRNA vaccines. We compare the new method with well-known nebulization methods used for medical respiratory applications. We find that a lower energy level in generating LNP droplets using the new nebulization method helps safeguard the integrity of the LNP and vaccine. By comparing nebulization techniques with different energy dissipation levels we find that LNPs and mRNAs can be kept largely intact if the energy dissipation remains below a threshold value, for LNP integrity 5-10 J/g and for mRNA integrity 10-20 J/g for both vaccines.


Assuntos
COVID-19 , Nanopartículas , Humanos , Vacinas contra COVID-19 , SARS-CoV-2/genética , COVID-19/prevenção & controle , RNA Mensageiro/genética , Vacinas de mRNA
7.
J Immunother Cancer ; 11(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37072345

RESUMO

BACKGROUND: Interferon (IFN)-ß induction via activation of the stimulator of interferon genes (STING) pathway has shown promising results in tumor models. STING is activated by cyclic dinucleotides such as cyclic GMP-AMP dinucleotides with phosphodiester linkages 2'-5' and 3'-5' (cGAMPs), that are produced by cyclic GMP-AMP synthetase (cGAS). However, delivery of STING pathway agonists to the tumor site is a challenge. Bacterial vaccine strains have the ability to specifically colonize hypoxic tumor tissues and could therefore be modified to overcome this challenge. Combining high STING-mediated IFN-ß levels with the immunostimulatory properties of Salmonella typhimurium could have potential to overcome the immune suppressive tumor microenvironment. METHODS: We have engineered S. typhimurium to produce cGAMP by expression of cGAS. The ability of cGAMP to induce IFN-ß and its IFN-stimulating genes was addressed in infection assays of THP-I macrophages and human primary dendritic cells (DCs). Expression of catalytically inactive cGAS is used as a control. DC maturation and cytotoxic T-cell cytokine and cytotoxicity assays were conducted to assess the potential antitumor response in vitro. Finally, by making use of different S. typhimurium type III secretion (T3S) mutants, the mode of cGAMP transport was elucidated. RESULTS: Expression of cGAS in S. typhimurium results in a 87-fold stronger IFN-ß response in THP-I macrophages. This effect was mediated by cGAMP production and is STING dependent. Interestingly, the needle-like structure of the T3S system was necessary for IFN-ß induction in epithelial cells. DC activation included upregulation of maturation markers and induction of type I IFN response. Coculture of challenged DCs with cytotoxic T cells revealed an improved cGAMP-mediated IFN-γ response. In addition, coculture of cytotoxic T cells with challenged DCs led to improved immune-mediated tumor B-cell killing. CONCLUSION: S. typhimurium can be engineered to produce cGAMPs that activate the STING pathway in vitro. Furthermore, they enhanced the cytotoxic T-cell response by improving IFN-γ release and tumor cell killing. Thus, the immune response triggered by S. typhimurium can be enhanced by ectopic cGAS expression. These data show the potential of S. typhimurium-cGAS in vitro and provides rationale for further research in vivo.


Assuntos
Interferon Tipo I , Neoplasias , Humanos , Salmonella typhimurium/metabolismo , Expressão Ectópica do Gene , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Macrófagos/metabolismo , Neoplasias/metabolismo , Células Dendríticas/metabolismo , Microambiente Tumoral
8.
EMBO J ; 41(19): e110629, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-35968812

RESUMO

Dysbiosis of vaginal microbiota is associated with increased HIV-1 acquisition, but the underlying cellular mechanisms remain unclear. Vaginal Langerhans cells (LCs) protect against mucosal HIV-1 infection via autophagy-mediated degradation of HIV-1. As LCs are in continuous contact with bacterial members of the vaginal microbiome, we investigated the impact of commensal and dysbiosis-associated vaginal (an)aerobic bacterial species on the antiviral function of LCs. Most of the tested bacteria did not affect the HIV-1 restrictive function of LCs. However, Prevotella timonensis induced a vast uptake of HIV-1 by vaginal LCs. Internalized virus remained infectious for days and uptake was unaffected by antiretroviral drugs. P. timonensis-exposed LCs efficiently transmitted HIV-1 to target cells both in vitro and ex vivo. Additionally, P. timonensis exposure enhanced uptake and transmission of the HIV-1 variants that establish infection after sexual transmission, the so-called Transmitted Founder variants. Our findings, therefore, suggest that P. timonensis might set the stage for enhanced HIV-1 susceptibility during vaginal dysbiosis and advocate targeted treatment of P. timonensis during bacterial vaginosis to limit HIV-1 infection.


Assuntos
Infecções por HIV , HIV-1 , Antivirais , Disbiose , Feminino , Humanos , Células de Langerhans , Prevotella
9.
Eur J Immunol ; 52(4): 646-655, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35099061

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), an infectious disease characterized by strong induction of inflammatory cytokines, progressive lung inflammation, and potentially multiorgan dysfunction. It remains unclear how SARS-CoV-2 infection leads to immune activation. The Spike (S) protein of SARS-CoV-2 has been suggested to trigger TLR4 and thereby activate immunity. Here, we have investigated the role of TLR4 in SARS-CoV-2 infection and immunity. Neither exposure of isolated S protein, SARS-CoV-2 pseudovirus nor primary SARS-CoV-2 isolate induced TLR4 activation in a TLR4-expressing cell line. Human monocyte-derived DCs express TLR4 but not angiotensin converting enzyme 2 (ACE2), and DCs were not infected by SARS-CoV-2. Notably, neither S protein nor SARS-CoV-2 induced DC maturation or cytokines, indicating that both S protein and SARS-CoV-2 virus particles do not trigger extracellular TLRs including TLR4. Ectopic expression of ACE2 in DCs led to efficient infection by SARS-CoV-2 and, strikingly, efficient type I IFN and cytokine responses. These data strongly suggest that not extracellular TLRs but intracellular viral sensors are key players in sensing SARS-CoV-2. These data imply that SARS-CoV-2 escapes direct sensing by TLRs, which might underlie the lack of efficient immunity to SARS-CoV-2 early during infection.


Assuntos
COVID-19 , Células Dendríticas , Glicoproteína da Espícula de Coronavírus , Receptor 4 Toll-Like , COVID-19/imunologia , Linhagem Celular , Células Dendríticas/imunologia , Humanos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/imunologia , Receptor 4 Toll-Like/imunologia
10.
J Leukoc Biol ; 112(2): 289-298, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34982481

RESUMO

Pathogens trigger multiple pattern recognition receptors (PRRs) that together dictate innate and adaptive immune responses. Understanding the crosstalk between PRRs is important to enhance vaccine efficacy. Abortive HIV-1 RNA transcripts are produced during acute and chronic HIV-1 infection and are known ligands for different PRRs, leading to antiviral and proinflammatory responses. Here, we have investigated the crosstalk between responses induced by these 58 nucleotide-long HIV-1 RNA transcripts and different TLR ligands. Costimulation of dendritic cells (DCs) with abortive HIV-1 RNA and TLR7/8 agonist R848, but not other TLR agonists, resulted in enhanced antiviral type I IFN responses as well as adaptive immune responses via the induction of DC-mediated T helper 1 (TH 1) responses and IFNγ+ CD8+ T cells. Our data underscore the importance of crosstalk between abortive HIV-1 RNA and R848-induced signaling for the induction of effective antiviral immunity.


Assuntos
HIV-1 , Adjuvantes Imunológicos , Antivirais , Linfócitos T CD8-Positivos , Células Dendríticas , HIV-1/fisiologia , Imunidade Inata , RNA , Receptores de Reconhecimento de Padrão
11.
EMBO J ; 40(20): e106765, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34510494

RESUMO

The current pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and outbreaks of new variants highlight the need for preventive treatments. Here, we identified heparan sulfate proteoglycans as attachment receptors for SARS-CoV-2. Notably, neutralizing antibodies against SARS-CoV-2 isolated from COVID-19 patients interfered with SARS-CoV-2 binding to heparan sulfate proteoglycans, which might be an additional mechanism of antibodies to neutralize infection. SARS-CoV-2 binding to and infection of epithelial cells was blocked by low molecular weight heparins (LMWH). Although dendritic cells (DCs) and mucosal Langerhans cells (LCs) were not infected by SARS-CoV-2, both DC subsets efficiently captured SARS-CoV-2 via heparan sulfate proteoglycans and transmitted the virus to ACE2-positive cells. Notably, human primary nasal cells were infected by SARS-CoV-2, and infection was blocked by pre-treatment with LMWH. These data strongly suggest that heparan sulfate proteoglycans are important attachment receptors facilitating infection and transmission, and support the use of LMWH as prophylaxis against SARS-CoV-2 infection.


Assuntos
COVID-19/transmissão , Proteoglicanas de Heparan Sulfato/metabolismo , Heparina de Baixo Peso Molecular/farmacologia , SARS-CoV-2/patogenicidade , Enzima de Conversão de Angiotensina 2/imunologia , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Anticorpos Neutralizantes/metabolismo , Anticorpos Neutralizantes/farmacologia , Chlorocebus aethiops , Células Dendríticas/metabolismo , Células Dendríticas/virologia , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Interações Hospedeiro-Patógeno , Humanos , Mucosa/citologia , Mucosa/virologia , SARS-CoV-2/metabolismo , Sindecana-1/metabolismo , Sindecana-4/metabolismo , Células Vero , Tratamento Farmacológico da COVID-19
12.
Pathogens ; 10(7)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34358047

RESUMO

The highly conserved trans-acting response element (TAR) present in the RNA genome of human immunodeficiency virus 1 (HIV-1) is a stably folded hairpin structure involved in viral replication. However, TAR is also sensed by viral sensors, leading to antiviral immunity. While high variation in the TAR RNA structure renders the virus replication-incompetent, effects on viral sensing remain unclear. Here, we investigated the role of TAR RNA structure and stability on viral sensing. TAR mutants with deletions in the TAR hairpin that enhanced thermodynamic stability increased antiviral responses. Strikingly, TAR mutants with lower stability due to destabilization of the TAR hairpin also increased antiviral responses without affecting pro-inflammatory responses. Moreover, mutations that affected the TAR RNA sequence also enhanced specific antiviral responses. Our data suggest that mutations in TAR of replication-incompetent viruses can still induce immune responses via viral sensors, hereby underscoring the robustness of HIV-1 RNA sensing mechanisms.

13.
Eur J Immunol ; 51(10): 2464-2477, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34223639

RESUMO

The proinflammatory cytokine IL-1ß mediates high levels of immune activation observed during acute and chronic human immunodeficiency virus 1 (HIV-1) infection. Little is known about the mechanisms that drive IL-1ß activation during HIV-1 infection. Here, we have identified a crucial role for abortive HIV-1 RNAs in inducing IL-1ß in humans. Abortive HIV-1 RNAs were sensed by protein kinase RNA-activated (PKR), which triggered activation of the canonical NLRP3 inflammasome and caspase-1, leading to pro-IL-1ß processing and secretion. PKR activated the inflammasome via ROS generation and MAP kinases ERK1/2, JNK, and p38. Inhibition of PKR during HIV-1 infection blocked IL-1ß production. As abortive HIV-1 RNAs are produced during productive infection and latency, our data strongly suggest that targeting PKR signaling might attenuate immune activation during acute and chronic HIV-1 infection.


Assuntos
Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/fisiologia , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , RNA Viral/metabolismo , eIF-2 Quinase/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Sistema de Sinalização das MAP Quinases , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , RNA Viral/genética , Espécies Reativas de Oxigênio/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Transdução de Sinais
14.
Sci Rep ; 11(1): 4767, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637808

RESUMO

Current direct-acting antiviral therapies are highly effective in suppressing HIV-1 replication. However, mucosal inflammation undermines prophylactic treatment efficacy, and HIV-1 persists in long-lived tissue-derived dendritic cells (DCs) and CD4+ T cells of treated patients. Host-directed strategies are an emerging therapeutic approach to improve therapy outcomes in infectious diseases. Autophagy functions as an innate antiviral mechanism by degrading viruses in specialized vesicles. Here, we investigated the impact of pharmaceutically enhancing autophagy on HIV-1 acquisition and viral replication. To this end, we developed a human tissue infection model permitting concurrent analysis of HIV-1 cellular targets ex vivo. Prophylactic treatment with autophagy-enhancing drugs carbamazepine and everolimus promoted HIV-1 restriction in skin-derived CD11c+ DCs and CD4+ T cells. Everolimus also decreased HIV-1 susceptibility to lab-adapted and transmitted/founder HIV-1 strains, and in vaginal Langerhans cells. Notably, we observed cell-specific effects of therapeutic treatment. Therapeutic rapamycin treatment suppressed HIV-1 replication in tissue-derived CD11c+ DCs, while all selected drugs limited viral replication in CD4+ T cells. Strikingly, both prophylactic and therapeutic treatment with everolimus or rapamycin reduced intestinal HIV-1 productive infection. Our findings highlight host autophagy pathways as an emerging target for HIV-1 therapies, and underscore the relevancy of repurposing clinically-approved autophagy drugs to suppress mucosal HIV-1 replication.


Assuntos
Fármacos Anti-HIV/farmacologia , Autofagia/efeitos dos fármacos , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , HIV-1/fisiologia , Humanos , Mucosa/efeitos dos fármacos , Mucosa/virologia
15.
Blood Adv ; 5(2): 549-564, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33496751

RESUMO

Gray platelet syndrome (GPS) is an autosomal recessive bleeding disorder characterized by a lack of α-granules in platelets and progressive myelofibrosis. Rare loss-of-function variants in neurobeachin-like 2 (NBEAL2), a member of the family of beige and Chédiak-Higashi (BEACH) genes, are causal of GPS. It is suggested that BEACH domain containing proteins are involved in fusion, fission, and trafficking of vesicles and granules. Studies in knockout mice suggest that NBEAL2 may control the formation and retention of granules in neutrophils. We found that neutrophils obtained from the peripheral blood from 13 patients with GPS have a normal distribution of azurophilic granules but show a deficiency of specific granules (SGs), as confirmed by immunoelectron microscopy and mass spectrometry proteomics analyses. CD34+ hematopoietic stem cells (HSCs) from patients with GPS differentiated into mature neutrophils also lacked NBEAL2 expression but showed similar SG protein expression as control cells. This is indicative of normal granulopoiesis in GPS and identifies NBEAL2 as a potentially important regulator of granule release. Patient neutrophil functions, including production of reactive oxygen species, chemotaxis, and killing of bacteria and fungi, were intact. NETosis was absent in circulating GPS neutrophils. Lack of NETosis is suggested to be independent of NBEAL2 expression but associated with SG defects instead, as indicated by comparison with HSC-derived neutrophils. Since patients with GPS do not excessively suffer from infections, the consequence of the reduced SG content and lack of NETosis for innate immunity remains to be explored.


Assuntos
Síndrome da Plaqueta Cinza , Animais , Plaquetas , Proteínas Sanguíneas , Grânulos Citoplasmáticos , Síndrome da Plaqueta Cinza/genética , Humanos , Camundongos , Neutrófilos
16.
J Reprod Immunol ; 138: 103085, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32004804

RESUMO

Dysbiosis of the vaginal microbiome as a result of overgrowth of anaerobic bacteria leads to bacterial vaginosis (BV) which is associated with increased inflammation in the genital mucosa. Moreover, BV increases susceptibility to sexual transmitted infections (STIs) and is associated with adverse pregnancy outcomes. It remains unclear how specific vaginal aerobic and anaerobic bacteria affect health and disease. We selected different vaginal bacteria ranging from true commensals to species associated with dysbiosis and investigated their effects on activation of dendritic cells (DCs). Commensal Lactobacilli crispatus did not induce DC maturation nor led to production of pro-inflammatory cytokines. In contrast, BV-associated bacteria Megasphaera elsdenii and Prevotella timonensis induced DC maturation and increased levels of pro-inflammatory cytokines. Notably, DCs stimulated with Prevotella timonensis suppressed Th2 responses and induced Th1 skewing, typically associated with preterm birth. In contrast, Lactobacillus crispatus and Megasphaera elsdenii did not affect Th cell polarization. These results strongly indicate that the interaction of vaginal bacteria with mucosal DCs determines mucosal inflammation and we have identified the anaerobic bacterium Prevotella timonensis as a strong inducer of inflammatory responses. Specifically targeting these inflammation-inducing bacteria might be a therapeutic strategy to prevent BV and associated risks in STI susceptibility and preterm birth.


Assuntos
Células Dendríticas/imunologia , Disbiose/complicações , Megasphaera elsdenii/imunologia , Prevotella/imunologia , Vaginose Bacteriana/imunologia , Células Cultivadas , Citocinas/metabolismo , Células Dendríticas/metabolismo , Disbiose/imunologia , Disbiose/microbiologia , Feminino , Humanos , Mediadores da Inflamação/metabolismo , Leucócitos Mononucleares , Prevotella/isolamento & purificação , Cultura Primária de Células , Vagina/citologia , Vagina/imunologia , Vagina/microbiologia , Vaginose Bacteriana/microbiologia
17.
Front Immunol ; 11: 8, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32038656

RESUMO

Strong innate and adaptive immune responses are paramount in combating viral infections. Dendritic cells (DCs) detect viral infections via cytosolic RIG-I like receptors (RLRs) RIG-I and MDA5 leading to MAVS-induced immunity. The DEAD-box RNA helicase DDX3 senses abortive human immunodeficiency virus 1 (HIV-1) transcripts and induces MAVS-dependent type I interferon (IFN) responses, suggesting that abortive HIV-1 RNA transcripts induce antiviral immunity. Little is known about the induction of antiviral immunity by DDX3-ligand abortive HIV-1 RNA. Here we synthesized a 58 nucleotide-long capped RNA (HIV-1 Cap-RNA58) that mimics abortive HIV-1 RNA transcripts. HIV-1 Cap-RNA58 induced potent type I IFN responses in monocyte-derived DCs, monocytes, macrophages and primary CD1c+ DCs. Compared with RLR agonist poly-I:C, HIV-1 Cap-RNA58 induced comparable levels of type I IFN responses, identifying HIV-1 Cap-RNA58 as a potent trigger of antiviral immunity. In monocyte-derived DCs, HIV-1 Cap-RNA58 activated the transcription factors IRF3 and NF-κB. Moreover, HIV-1 Cap-RNA58 induced DC maturation and the expression of pro-inflammatory cytokines. HIV-1 Cap-RNA58-stimulated DCs induced proliferation of CD4+ and CD8+ T cells and differentiated naïve T helper (TH) cells toward a TH2 phenotype. Importantly, treatment of DCs with HIV-1 Cap-RNA58 resulted in an efficient antiviral innate immune response that reduced ongoing HIV-1 replication in DCs. Our data strongly suggest that HIV-1 Cap-RNA58 induces potent innate and adaptive immune responses, making it an interesting addition in vaccine design strategies.


Assuntos
Imunidade Adaptativa , Infecções por HIV/imunologia , HIV-1/genética , Interações entre Hospedeiro e Microrganismos/imunologia , Imunidade Inata , RNA Viral/farmacologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células Dendríticas/imunologia , Células Dendríticas/virologia , Infecções por HIV/virologia , Humanos , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Macrófagos/imunologia , Macrófagos/virologia , Monócitos/imunologia , Monócitos/virologia , NF-kappa B/metabolismo , RNA Viral/síntese química , RNA Viral/imunologia , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Transcrição Gênica
18.
PLoS One ; 14(12): e0226651, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31856198

RESUMO

A single HIV-1 variant establishes infection of the host after sexual contact. Identifying the phenotypic characteristics of these Transmitted Founder (T/F) viruses is important to understand the restriction mechanisms during transmission. Langerhans cells (LCs) are the mucosal dendritic cell subset that has been shown to have a protective role in HIV-1 transmission. Immature LCs efficiently capture and degrade HIV-1 via langerin-mediated restriction. Here we have investigated the capacity of T/F HIV-1 strains to infect mucosal Langerhans cells (LCs). Notably, most T/F variants efficiently infected immature LCs derived from skin and vaginal tissue in contrast to chronic HIV-1 laboratory strains. Next we screened a panel of T/F viruses and their matched 6-month consensus sequence viruses. Interestingly most T/F variants infected immature LCs whereas donor-matched 6-month consensus sequence viruses had lost the ability to infect LCs. However, we also identified 6-month consensus sequence viruses that had retained an ability to infect LCs similar to that of the donor-matched T/F virus. Moreover, some T/F viruses and 6-month consensus sequence viruses were unable to infect immature LCs. Further analyses indicated that T/F viruses are less sensitive to langerin-mediated restriction. These data suggest that T/F HIV-1 variants have the ability to infect immature LCs, which will facilitate transmission.


Assuntos
HIV-1/patogenicidade , Interações Hospedeiro-Patógeno , Células de Langerhans/virologia , Antígenos CD/metabolismo , Células Cultivadas , Células HEK293 , Humanos , Células de Langerhans/imunologia , Lectinas Tipo C/metabolismo , Lectinas de Ligação a Manose/metabolismo
19.
J Clin Invest ; 128(9): 3957-3975, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-29969437

RESUMO

Biallelic loss-of-function (LOF) mutations of the NCF4 gene, encoding the p40phox subunit of the phagocyte NADPH oxidase, have been described in only 1 patient. We report on 24 p40phox-deficient patients from 12 additional families in 8 countries. These patients display 8 different in-frame or out-of-frame mutations of NCF4 that are homozygous in 11 of the families and compound heterozygous in another. When overexpressed in NB4 neutrophil-like cells and EBV-transformed B cells in vitro, the mutant alleles were found to be LOF, with the exception of the p.R58C and c.120_134del alleles, which were hypomorphic. Particle-induced NADPH oxidase activity was severely impaired in the patients' neutrophils, whereas PMA-induced dihydrorhodamine-1,2,3 (DHR) oxidation, which is widely used as a diagnostic test for chronic granulomatous disease (CGD), was normal or mildly impaired in the patients. Moreover, the NADPH oxidase activity of EBV-transformed B cells was also severely impaired, whereas that of mononuclear phagocytes was normal. Finally, the killing of Candida albicans and Aspergillus fumigatus hyphae by neutrophils was conserved in these patients, unlike in patients with CGD. The patients suffer from hyperinflammation and peripheral infections, but they do not have any of the invasive bacterial or fungal infections seen in CGD. Inherited p40phox deficiency underlies a distinctive condition, resembling a mild, atypical form of CGD.


Assuntos
Doença Granulomatosa Crônica/genética , Mutação com Perda de Função , Fosfoproteínas/deficiência , Fosfoproteínas/genética , Adolescente , Adulto , Alelos , Criança , Pré-Escolar , Feminino , Técnicas de Inativação de Genes , Doença Granulomatosa Crônica/diagnóstico , Doença Granulomatosa Crônica/metabolismo , Células HEK293 , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Linhagem , Fagócitos/imunologia , Fagócitos/metabolismo , Fagócitos/microbiologia , Fenótipo , Fosfoproteínas/metabolismo , Prognóstico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução Genética , Adulto Jovem
20.
PLoS Pathog ; 13(11): e1006738, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29186193

RESUMO

Follicular T helper cells (TFH) are fundamental in orchestrating effective antibody-mediated responses critical for immunity against viral infections and effective vaccines. However, it is unclear how virus infection leads to TFH induction. We here show that dengue virus (DENV) infection of human dendritic cells (DCs) drives TFH formation via crosstalk of RIG-I-like receptor (RLR) RIG-I and MDA5 with type I Interferon (IFN) signaling. DENV infection leads to RLR-dependent IKKε activation, which phosphorylates IFNα/ß receptor-induced STAT1 to drive IL-27 production via the transcriptional complex ISGF3. Inhibiting RLR activation as well as neutralizing antibodies against IL-27 prevented TFH formation. DENV-induced CXCR5+PD-1+Bcl-6+ TFH cells secreted IL-21 and activated B cells to produce IgM and IgG. Notably, RLR activation by synthetic ligands also induced IL-27 secretion and TFH polarization. These results identify an innate mechanism by which antibodies develop during viral disease and identify RLR ligands as potent adjuvants for TFH-promoting vaccination strategies.


Assuntos
Anticorpos Antivirais/imunologia , Vírus da Dengue/fisiologia , Dengue/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Formação de Anticorpos , Linfócitos B/imunologia , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/imunologia , Células Dendríticas/imunologia , Dengue/genética , Dengue/virologia , Humanos , Helicase IFIH1 Induzida por Interferon/genética , Helicase IFIH1 Induzida por Interferon/imunologia , Interleucina-27/genética , Interleucina-27/imunologia , Interleucinas/genética , Interleucinas/imunologia , Ativação Linfocitária , Receptores Imunológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...