Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Lab Chip ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39292495

RESUMO

Puumala orthohantavirus (PUUV) infection in humans can result in hemorrhagic fever with renal syndrome. Endothelial cells (ECs) are primarily infected with increased vascular permeability as a central aspect of pathogenesis. Historically, most studies included ECs cultured under static two-dimensional (2D) conditions, thereby not recapitulating the physiological environment due to their lack of flow and inherent pro-inflammatory state. Here, we present a high-throughput model for culturing primary human umbilical vein ECs in 3D vessels-on-chip in which we compared host responses of these ECs to those of static 2D-cultured ECs on a transcriptional level. The phenotype of ECs in vessels-on-chip more closely resembled the in vivo situation due to higher similarity in expression of genes encoding described markers for disease severity and coagulopathy, including IDO1, LGALS3BP, IL6 and PLAT, and more diverse endothelial-leukocyte interactions in the context of PUUV infection. In these vessels-on-chip, PUUV infection did not directly increase vascular permeability, but increased monocyte adhesion. This platform can be used for studying pathogenesis and assessment of possible therapeutics for other endotheliotropic viruses even in high biocontainment facilities.

2.
PLoS One ; 18(4): e0284404, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37053248

RESUMO

Signal inhibitory receptor on leukocytes-1 (SIRL-1) is an immune inhibitory receptor expressed on human myeloid cells. We previously showed that dendritic cell (DC)-driven Th17 cell differentiation of human naive CD4+ T cells requires presence of neutrophils, which is inhibited by SIRL-1 ligation. VSTM1-v2 is a soluble isoform of SIRL-1, which was previously proposed to function as a Th17 polarizing cytokine. Here, we investigated the effect of VSTM1-v2 on DC-driven Th17 cell development. Neutrophils induced DC-driven Th17 cell differentiation, which was not enhanced by VSTM1-v2. Similarly, we found no effect of VSTM1-v2 on cytokine-driven Th17 cell development. Thus, our results do not support a role for VSTM1-v2 in Th17 cell differentiation.


Assuntos
Citocinas , Células Th17 , Humanos , Diferenciação Celular , Células Dendríticas , Neutrófilos , Isoformas de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA