Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anat ; 243(1): 78-89, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36748120

RESUMO

Live imaging in the zebrafish embryo using tissue-specific expression of fluorescent proteins can yield important insights into the mechanisms that drive sensory organ morphogenesis and cell differentiation. Morphogenesis of the semicircular canal ducts of the vertebrate inner ear requires a complex rearrangement of epithelial cells, including outgrowth, adhesion, fusion and perforation of epithelial projections to generate pillars of tissue that form the hubs of each canal. We report the insertion sites and expression patterns of two enhancer trap lines in the developing zebrafish embryo, each of which highlight different aspects of epithelial cell morphogenesis in the inner ear. A membrane-linked EGFP driven by smad6b regulatory sequences is expressed throughout the otic epithelium, most strongly on the lateral side of the ear and in the sensory cristae. A second enhancer trap line, with cytoplasmic EGFP driven by frizzled1 (fzd1) regulatory sequences, specifically marks cells of the ventral projection and pillar in the developing ear, and marginal cells in the sensory cristae, together with variable expression in the retina and epiphysis, and neurons elsewhere in the developing central nervous system. We have used a combination of methods to identify the insertion sites of these two transgenes, which were generated through random insertion, and show that Targeted Locus Amplification is a rapid and reliable method for the identification of insertion sites of randomly inserted transgenes.


Assuntos
Canais Semicirculares , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Epitélio/metabolismo , Morfogênese/fisiologia , Regulação da Expressão Gênica no Desenvolvimento
2.
Front Physiol ; 12: 626080, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33716772

RESUMO

We report the presence of a rare cell type, the olfactory rod cell, in the developing zebrafish olfactory epithelium. These cells each bear a single actin-rich rod-like apical projection extending 5-10 µm from the epithelial surface. Live imaging with a ubiquitous Lifeact-RFP label indicates that the olfactory rods can oscillate. Olfactory rods arise within a few hours of the olfactory pit opening, increase in numbers and size during larval stages, and can develop in the absence of olfactory cilia. Olfactory rod cells differ in morphology from the known classes of olfactory sensory neuron, but express reporters driven by neuronal promoters. A sub-population of olfactory rod cells expresses a Lifeact-mRFPruby transgene driven by the sox10 promoter. Mosaic expression of this transgene reveals that olfactory rod cells have rounded cell bodies located apically in the olfactory epithelium and have no detectable axon. We offer speculation on the possible function of these cells in the Discussion.

3.
PLoS Genet ; 15(4): e1008051, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31022185

RESUMO

In the zebrafish, Fgf and Hh signalling assign anterior and posterior identity, respectively, to the poles of the developing ear. Mis-expression of fgf3 or inhibition of Hh signalling results in double-anterior ears, including ectopic expression of hmx3a. To understand how this double-anterior pattern is established, we characterised transcriptional responses in Fgf gain-of-signalling or Hh loss-of-signalling backgrounds. Mis-expression of fgf3 resulted in rapid expansion of anterior otic markers, refining over time to give the duplicated pattern. Response to Hh inhibition was very different: initial anteroposterior asymmetry was retained, with de novo duplicate expression domains appearing later. We show that Hmx3a is required for normal anterior otic patterning, and that otic patterning defects in hmx3a-/- mutants are a close phenocopy to those seen in fgf3-/- mutants. However, neither loss nor gain of hmx3a function was sufficient to generate full ear duplications. Using our data to infer a transcriptional regulatory network required for acquisition of otic anterior identity, we can recapitulate both the wild-type and the double-anterior pattern in a mathematical model.


Assuntos
Padronização Corporal/genética , Orelha/embriologia , Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas Hedgehog/metabolismo , Fatores de Transcrição/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/embriologia , Peixe-Zebra/fisiologia , Animais , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Fenótipo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...