Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Cell Rep Med ; : 101523, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38670098

RESUMO

Peritoneal metastases (PMs) from colorectal cancer (CRC) respond poorly to treatment and are associated with unfavorable prognosis. For example, the addition of hyperthermic intraperitoneal chemotherapy (HIPEC) to cytoreductive surgery in resectable patients shows limited benefit, and novel treatments are urgently needed. The majority of CRC-PMs represent the CMS4 molecular subtype of CRC, and here we queried the vulnerabilities of this subtype in pharmacogenomic databases to identify novel therapies. This reveals the copper ionophore elesclomol (ES) as highly effective against CRC-PMs. ES exhibits rapid cytotoxicity against CMS4 cells by targeting mitochondria. We find that a markedly reduced mitochondrial content in CMS4 cells explains their vulnerability to ES. ES demonstrates efficacy in preclinical models of PMs, including CRC-PMs and ovarian cancer organoids, mouse models, and a HIPEC rat model of PMs. The above proposes ES as a promising candidate for the local treatment of CRC-PMs, with broader implications for other PM-prone cancers.

2.
Cancer Cell ; 42(2): 283-300.e8, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38181797

RESUMO

Pediatric patients with high-risk neuroblastoma have poor survival rates and urgently need more effective treatment options with less side effects. Since novel and improved immunotherapies may fill this need, we dissect the immunoregulatory interactions in neuroblastoma by single-cell RNA-sequencing of 24 tumors (10 pre- and 14 post-chemotherapy, including 5 pairs) to identify strategies for optimizing immunotherapy efficacy. Neuroblastomas are infiltrated by natural killer (NK), T and B cells, and immunosuppressive myeloid populations. NK cells show reduced cytotoxicity and T cells have a dysfunctional profile. Interaction analysis reveals a vast immunoregulatory network and identifies NECTIN2-TIGIT as a crucial immune checkpoint. Combined blockade of TIGIT and PD-L1 significantly reduces neuroblastoma growth, with complete responses (CR) in vivo. Moreover, addition of TIGIT+PD-L1 blockade to standard relapse treatment in a chemotherapy-resistant Th-ALKF1174L/MYCN 129/SvJ syngeneic model induces CR. In conclusion, our integrative analysis provides promising targets and a rationale for immunotherapeutic combination strategies.


Assuntos
Antígeno B7-H1 , Neuroblastoma , Humanos , Criança , Recidiva Local de Neoplasia , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Receptores Imunológicos/genética , Imunoterapia , Análise de Sequência de RNA
3.
Genome Biol ; 24(1): 177, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528411

RESUMO

BACKGROUND: RNA profiling technologies at single-cell resolutions, including single-cell and single-nuclei RNA sequencing (scRNA-seq and snRNA-seq, scnRNA-seq for short), can help characterize the composition of tissues and reveal cells that influence key functions in both healthy and disease tissues. However, the use of these technologies is operationally challenging because of high costs and stringent sample-collection requirements. Computational deconvolution methods that infer the composition of bulk-profiled samples using scnRNA-seq-characterized cell types can broaden scnRNA-seq applications, but their effectiveness remains controversial. RESULTS: We produced the first systematic evaluation of deconvolution methods on datasets with either known or scnRNA-seq-estimated compositions. Our analyses revealed biases that are common to scnRNA-seq 10X Genomics assays and illustrated the importance of accurate and properly controlled data preprocessing and method selection and optimization. Moreover, our results suggested that concurrent RNA-seq and scnRNA-seq profiles can help improve the accuracy of both scnRNA-seq preprocessing and the deconvolution methods that employ them. Indeed, our proposed method, Single-cell RNA Quantity Informed Deconvolution (SQUID), which combines RNA-seq transformation and dampened weighted least-squares deconvolution approaches, consistently outperformed other methods in predicting the composition of cell mixtures and tissue samples. CONCLUSIONS: We showed that analysis of concurrent RNA-seq and scnRNA-seq profiles with SQUID can produce accurate cell-type abundance estimates and that this accuracy improvement was necessary for identifying outcomes-predictive cancer cell subclones in pediatric acute myeloid leukemia and neuroblastoma datasets. These results suggest that deconvolution accuracy improvements are vital to enabling its applications in the life sciences.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Criança , Humanos , RNA-Seq , Perfilação da Expressão Gênica/métodos , RNA Interferente Pequeno , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos
4.
PLoS One ; 18(8): e0289084, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37540673

RESUMO

Neuroblastoma is the most common extracranial solid tumor in children. A subgroup of high-risk patients is characterized by aberrations in the chromatin remodeller ATRX that is encoded by 35 exons. In contrast to other pediatric cancer where ATRX point mutations are most frequent, multi-exon deletions (MEDs) are the most frequent type of ATRX aberrations in neuroblastoma. 75% of these MEDs are predicted to produce in-frame fusion proteins, suggesting a potential gain-of-function effect compared to nonsense mutations. For neuroblastoma there are only a few patient-derived ATRX aberrant models. Therefore, we created isogenic ATRX aberrant models using CRISPR-Cas9 in several neuroblastoma cell lines and one tumoroid and performed total RNA-sequencing on these and the patient-derived models. Gene set enrichment analysis (GSEA) showed decreased expression of genes related to both ribosome biogenesis and several metabolic processes in our isogenic ATRX exon 2-10 MED model systems, the patient-derived MED models and in tumor data containing two patients with an ATRX exon 2-10 MED. In sharp contrast, these same processes showed an increased expression in our isogenic ATRX knock-out and exon 2-13 MED models. Our validations confirmed a role of ATRX in the regulation of ribosome homeostasis. The two distinct molecular expression patterns within ATRX aberrant neuroblastomas that we identified imply that there might be a need for distinct treatment regimens.


Assuntos
Neuroblastoma , Criança , Humanos , Proteína Nuclear Ligada ao X/genética , Neuroblastoma/genética , Neuroblastoma/patologia , Cromatina , Linhagem Celular , Expressão Gênica
5.
BMC Cancer ; 23(1): 310, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37020198

RESUMO

BACKGROUND: Pediatric cancer is the leading cause of disease-related death in children and the need for better therapeutic options remains urgent. Due to the limited number of patients, target and drug development for pediatrics is often supplemented by data from studies focused on adult cancers. Recent evidence shows that pediatric cancers possess different vulnerabilities that should be explored independently from adult cancers. METHODS: Using the publicly available Genomics of Drug Sensitivity in Cancer database, we explore therapeutic targets and biomarkers specific to the pediatric solid malignancies Ewing sarcoma, medulloblastoma, neuroblastoma, osteosarcoma, and rhabdomyosarcoma. Results are validated using cell viability assays and high-throughput drug screens are used to identify synergistic combinations. RESULTS: Using published drug screening data, PARP is identified as a drug target of interest across multiple different pediatric malignancies. We validate these findings, and we show that efficacy can be improved when combined with conventional chemotherapeutics, namely topoisomerase inhibitors. Additionally, using gene set enrichment analysis, we identify ribosome biogenesis as a potential biomarker for PARP inhibition in pediatric cancer cell lines. CONCLUSION: Collectively, our results provide evidence to support the further development of PARP inhibition and the combination with TOP1 inhibition as a therapeutic approach in solid pediatric malignancies. Additionally, we propose ribosome biogenesis as a component to PARP inhibitor sensitivity that should be further investigated to help maximize the potential utility of PARP inhibition and combinations across pediatric solid malignancies.


Assuntos
Antineoplásicos , Neoplasias Cerebelares , Neuroblastoma , Sarcoma de Ewing , Humanos , Criança , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Antineoplásicos/uso terapêutico , Sarcoma de Ewing/tratamento farmacológico , Neuroblastoma/patologia , Neoplasias Cerebelares/tratamento farmacológico , Linhagem Celular Tumoral
6.
Front Oncol ; 12: 929123, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36237330

RESUMO

Neuroblastoma is the most common extracranial solid tumor found in children and despite intense multi-modal therapeutic approaches, low overall survival rates of high-risk patients persist. Tumors with heterozygous loss of chromosome 11q and MYCN amplification are two genetically distinct subsets of neuroblastoma that are associated with poor patient outcome. Using an isogenic 11q deleted model system and high-throughput drug screening, we identify checkpoint kinase 1 (CHK1) as a potential therapeutic target for 11q deleted neuroblastoma. Further investigation reveals MYCN amplification as a possible additional biomarker for CHK1 inhibition, independent of 11q loss. Overall, our study highlights the potential power of studying chromosomal aberrations to guide preclinical development of novel drug targets and combinations. Additionally, our study builds on the growing evidence that DNA damage repair and replication stress response pathways offer therapeutic vulnerabilities for the treatment of neuroblastoma.

7.
Eur J Cancer ; 175: 311-325, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36182817

RESUMO

iTHER is a Dutch prospective national precision oncology program aiming to define tumour molecular profiles in children and adolescents with primary very high-risk, relapsed, or refractory paediatric tumours. Between April 2017 and April 2021, 302 samples from 253 patients were included. Comprehensive molecular profiling including low-coverage whole genome sequencing (lcWGS), whole exome sequencing (WES), RNA sequencing (RNA-seq), Affymetrix, and/or 850k methylation profiling was successfully performed for 226 samples with at least 20% tumour content. Germline pathogenic variants were identified in 16% of patients (35/219), of which 22 variants were judged causative for a cancer predisposition syndrome. At least one somatic alteration was detected in 204 (90.3%), and 185 (81.9%) were considered druggable, with clinical priority very high (6.1%), high (21.3%), moderate (26.0%), intermediate (36.1%), and borderline (10.5%) priority. iTHER led to revision or refinement of diagnosis in 8 patients (3.5%). Temporal heterogeneity was observed in paired samples of 15 patients, indicating the value of sequential analyses. Of 137 patients with follow-up beyond twelve months, 21 molecularly matched treatments were applied in 19 patients (13.9%), with clinical benefit in few. Most relevant barriers to not applying targeted therapies included poor performance status, as well as limited access to drugs within clinical trial. iTHER demonstrates the feasibility of comprehensive molecular profiling across all ages, tumour types and stages in paediatric cancers, informing of diagnostic, prognostic, and targetable alterations as well as reportable germline variants. Therefore, WES and RNA-seq is nowadays standard clinical care at the Princess Máxima Center for all children with cancer, including patients at primary diagnosis. Improved access to innovative treatments within biology-driven combination trials is required to ultimately improve survival.


Assuntos
Neoplasias , Adolescente , Criança , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Oncologia , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Medicina de Precisão , Estudos Prospectivos , Sequenciamento do Exoma
8.
Eur J Cancer ; 162: 107-117, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34963094

RESUMO

BACKGROUND: Owing to the high numbers of paediatric cancer-related deaths, advances in therapeutic options for childhood cancer is a heavily studied field, especially over the past decade. Classical chemotherapy offers some therapeutic benefit but has proven long-term complications in survivors, and there is an urgent need to identify novel target-driven therapies. Replication stress is a major cause of genomic instability in cancer, triggering the stalling of the replication fork. Failure of molecular response by DNA damage checkpoints, DNA repair mechanisms and restarting the replication forks can exacerbate replication stress and initiate cell death pathways, thus presenting as a novel therapeutic target. To bridge the gap between preclinical evidence and clinical utility thereof, we apply the literature-driven systematic target actionability review methodology to published proof-of-concept (PoC) data related to the process of replication stress. METHODS: A meticulous PubMed literature search was performed to gather replication stress-related articles (published between 2014 and 2021) across 16 different paediatric solid tumour types. Articles that fulfilled inclusion criteria were uploaded into the R2 informatics platform [r2.amc.nl] and assessed by critical appraisal. Key evidence based on nine pre-established PoC modules was summarised, and scores based on the quality and outcome of each study were assigned by two separate reviewers. Articles with discordant modules/scores were re-scored by a third independent reviewer, and a final consensus score was agreed upon by adjudication between all three reviewers. To visualise the final scores, an interactive heatmap summarising the evidence and scores associated with each PoC module across all, including paediatric tumour types, were generated. RESULTS AND CONCLUSIONS: 145 publications related to targeting replication stress in paediatric tumours were systematically reviewed with an emphasis on DNA repair pathways and cell cycle checkpoint control. Although various targets in these pathways have been studied in these diseases to different extents, the results of this extensive literature search show that ATR, CHK1, PARP or WEE1 are the most promising targets using either single agents or in combination with chemotherapy or radiotherapy in neuroblastoma, osteosarcoma, high-grade glioma or medulloblastoma. Targeting these pathways in other paediatric malignancies may work as well, but here, the evidence was more limited. The evidence for other targets (such as ATM and DNA-PK) was also limited but showed promising results in some malignancies and requires more studies in other tumour types. Overall, we have created an extensive overview of targeting replication stress across 16 paediatric tumour types, which can be explored using the interactive heatmap on the R2 target actionability review platform [https://hgserver1.amc.nl/cgi-bin/r2/main.cgi?option=imi2_targetmap_v1].


Assuntos
Neoplasias Ósseas , Neoplasias Cerebelares , Meduloblastoma , Pontos de Checagem do Ciclo Celular , Criança , Reparo do DNA , Humanos
9.
J Pers Med ; 11(9)2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34575700

RESUMO

Currently ~50% of patients with a diagnosis of high-risk neuroblastoma will not survive due to relapsing or refractory disease. Recent innovations in immunotherapy for solid tumors are highly promising, but the low MHC-I expression of neuroblastoma represents a major challenge for T cell-mediated immunotherapy. Here, we propose a novel T cell-based immunotherapy approach for neuroblastoma, based on the use of TEG002, αß-T cells engineered to express a defined γδ-T cell receptor, which can recognize and kill target cells independent of MHC-I. In a co-culture killing assay, we showed that 3 out of 6 neuroblastoma organoids could activate TEG002 as measured by IFNγ production. Transcriptional profiling showed this effect correlates with an increased activity of processes involved in interferon signaling and extracellular matrix organization. Analysis of the dynamics of organoid killing by TEG002 over time confirmed that organoids which induced TEG002 activation were efficiently killed independent of their MHC-I expression. Of note, efficacy of TEG002 treatment was superior to donor-matched untransduced αß-T cells or endogenous γδ-T cells. Our data suggest that TEG002 may be a promising novel treatment option for a subset of neuroblastoma patients.

10.
Cell Rep ; 36(8): 109568, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34433038

RESUMO

Malignant rhabdoid tumors (MRTs) represent one of the most aggressive childhood malignancies. No effective treatment options are available, and prognosis is, therefore, dismal. Previous studies have demonstrated that tumor organoids capture the heterogeneity of patient tumors and can be used to predict patient response to therapy. Here, we perform drug screening on patient-derived normal and tumor organoids to identify MRT-specific therapeutic vulnerabilities. We identify neddylation inhibitor MLN4924 as a potential therapeutic agent. Mechanistically, we find increased neddylation in MRT organoids and tissues and show that MLN4924 induces a cytotoxic response via upregulation of the unfolded protein response. Lastly, we demonstrate in vivo efficacy in an MRT PDX mouse model, in which single-agent MLN4924 treatment significantly extends survival. Our study demonstrates that organoids can be used to find drugs selectively targeting tumor cells while leaving healthy cells unharmed and proposes neddylation inhibition as a therapeutic strategy in MRT.


Assuntos
Ciclopentanos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Organoides/metabolismo , Pirimidinas/farmacologia , Tumor Rabdoide , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Tumor Rabdoide/tratamento farmacológico , Tumor Rabdoide/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Nat Commun ; 12(1): 5006, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34408135

RESUMO

Obesity is a strong risk factor for cancer progression, posing obesity-related cancer as one of the leading causes of death. Nevertheless, the molecular mechanisms that endow cancer cells with metastatic properties in patients affected by obesity remain unexplored.Here, we show that IL-6 and HGF, secreted by tumor neighboring visceral adipose stromal cells (V-ASCs), expand the metastatic colorectal (CR) cancer cell compartment (CD44v6 + ), which in turn secretes neurotrophins such as NGF and NT-3, and recruits adipose stem cells within tumor mass. Visceral adipose-derived factors promote vasculogenesis and the onset of metastatic dissemination by activation of STAT3, which inhibits miR-200a and enhances ZEB2 expression, effectively reprogramming CRC cells into a highly metastatic phenotype. Notably, obesity-associated tumor microenvironment provokes a transition in the transcriptomic expression profile of cells derived from the epithelial consensus molecular subtype (CMS2) CRC patients towards a mesenchymal subtype (CMS4). STAT3 pathway inhibition reduces ZEB2 expression and abrogates the metastatic growth sustained by adipose-released proteins. Together, our data suggest that targeting adipose factors in colorectal cancer patients with obesity may represent a therapeutic strategy for preventing metastatic disease.


Assuntos
Tecido Adiposo/citologia , Reprogramação Celular , Neoplasias do Colo/fisiopatologia , Células-Tronco Neoplásicas/citologia , Nicho de Células-Tronco , Tecido Adiposo/metabolismo , Animais , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos SCID , MicroRNAs/genética , MicroRNAs/metabolismo , Metástase Neoplásica , Células-Tronco/citologia , Células-Tronco/metabolismo , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo
12.
Nat Commun ; 12(1): 3464, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34103493

RESUMO

Right-sided (proximal) colorectal cancer (CRC) has a poor prognosis and a distinct mutational profile, characterized by oncogenic BRAF mutations and aberrations in mismatch repair and TGFß signalling. Here, we describe a mouse model of right-sided colon cancer driven by oncogenic BRAF and loss of epithelial TGFß-receptor signalling. The proximal colonic tumours that develop in this model exhibit a foetal-like progenitor phenotype (Ly6a/Sca1+) and, importantly, lack expression of Lgr5 and its associated intestinal stem cell signature. These features are recapitulated in human BRAF-mutant, right-sided CRCs and represent fundamental differences between left- and right-sided disease. Microbial-driven inflammation supports the initiation and progression of these tumours with foetal-like characteristics, consistent with their predilection for the microbe-rich right colon and their antibiotic sensitivity. While MAPK-pathway activating mutations drive this foetal-like signature via ERK-dependent activation of the transcriptional coactivator YAP, the same foetal-like transcriptional programs are also initiated by inflammation in a MAPK-independent manner. Importantly, in both contexts, epithelial TGFß-receptor signalling is instrumental in suppressing the tumorigenic potential of these foetal-like progenitor cells.


Assuntos
Carcinogênese/metabolismo , Neoplasias do Colo/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Carcinogênese/patologia , Diferenciação Celular , Sobrevivência Celular , Colo/patologia , Neoplasias do Colo/genética , Células Epiteliais/metabolismo , Feto/patologia , Inflamação/patologia , Estimativa de Kaplan-Meier , Sistema de Sinalização das MAP Quinases , Camundongos Endogâmicos C57BL , Mutação , Prognóstico , Proteínas Proto-Oncogênicas B-raf/genética , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , Proteínas de Sinalização YAP
13.
Cell Death Differ ; 28(12): 3282-3296, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34117376

RESUMO

Evasion of apoptosis is a hallmark of cancer, which is frequently mediated by upregulation of the antiapoptotic BCL-2 family proteins. In colorectal cancer (CRC), previous work has highlighted differential antiapoptotic protein dependencies determined by the stage of the disease. While intestinal stem cells (ISCs) require BCL-2 for adenoma outgrowth and survival during transformation, ISC-specific MCL1 deletion results in disturbed intestinal homeostasis, eventually contributing to tumorigenesis. Colon cancer stem cells (CSCs), however, no longer require BCL-2 and depend mainly on BCL-XL for their survival. We therefore hypothesized that a shift in antiapoptotic protein reliance occurs in ISCs as the disease progresses from normal to adenoma to carcinoma. By targeting antiapoptotic proteins with specific BH3 mimetics in organoid models of CRC progression, we found that BCL-2 is essential only during ISC transformation while MCL1 inhibition did not affect adenoma outgrowth. BCL-XL, on the other hand, was crucial for stem cell survival throughout the adenoma-to-carcinoma sequence. Furthermore, we identified that the limited window of BCL-2 reliance is a result of its downregulation by miR-17-5p, a microRNA that is upregulated upon APC-mutation driven transformation. Here we show that BCL-XL inhibition effectively impairs adenoma outgrowth in vivo and enhances the efficacy of chemotherapy. In line with this dependency, expression of BCL-XL, but not BCL-2 or MCL1, directly correlated to the outcome of chemotherapy-treated CRC patients. Our results provide insights to enable the rational use of BH3 mimetics in CRC management, particularly underlining the therapeutic potential of BCL-XL targeting mimetics in both early and late-stage disease.


Assuntos
Adenoma/genética , Neoplasias Colorretais/genética , Proteína bcl-X/genética , Adenoma/mortalidade , Adenoma/patologia , Animais , Apoptose , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Progressão da Doença , Feminino , Humanos , Masculino , Camundongos , Análise de Sobrevida
14.
Cancers (Basel) ; 13(4)2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33673003

RESUMO

Colorectal cancer (CRC) is a heterogeneous disease that can currently be subdivided into four distinct consensus molecular subtypes (CMS) based on gene expression profiling. The CMS4 subtype is marked by high expression of mesenchymal genes and is associated with a worse overall prognosis compared to other CMSs. Importantly, this subtype responds poorly to the standard therapies currently used to treat CRC. We set out to explore what regulatory signalling networks underlie the CMS4 phenotype of cancer cells, specifically, by analysing which kinases were more highly expressed in this subtype compared to others. We found AKT3 to be expressed in the cancer cell epithelium of CRC specimens, patient derived xenograft (PDX) models and in (primary) cell cultures representing CMS4. Importantly, chemical inhibition or knockout of this gene hampers outgrowth of this subtype, as AKT3 controls expression of the cell cycle regulator p27KIP1. Furthermore, high AKT3 expression was associated with high expression of epithelial-mesenchymal transition (EMT) genes, and this observation could be expanded to cell lines representing other carcinoma types. More importantly, this association allowed for the identification of CRC patients with a high propensity to metastasise and an associated poor prognosis. High AKT3 expression in the tumour epithelial compartment may thus be used as a surrogate marker for EMT and may allow for a selection of CRC patients that could benefit from AKT3-targeted therapy.

15.
Sci Adv ; 7(6)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33547074

RESUMO

Neuroblastoma is a childhood cancer that resembles developmental stages of the neural crest. It is not established what developmental processes neuroblastoma cancer cells represent. Here, we sought to reveal the phenotype of neuroblastoma cancer cells by comparing cancer (n = 19,723) with normal fetal adrenal single-cell transcriptomes (n = 57,972). Our principal finding was that the neuroblastoma cancer cell resembled fetal sympathoblasts, but no other fetal adrenal cell type. The sympathoblastic state was a universal feature of neuroblastoma cells, transcending cell cluster diversity, individual patients, and clinical phenotypes. We substantiated our findings in 650 neuroblastoma bulk transcriptomes and by integrating canonical features of the neuroblastoma genome with transcriptional signals. Overall, our observations indicate that a pan-neuroblastoma cancer cell state exists, which may be attractive for novel immunotherapeutic and targeted avenues.


Assuntos
Células-Tronco Neurais , Neuroblastoma , Criança , Humanos , Crista Neural/metabolismo , Células-Tronco Neurais/metabolismo , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , RNA Mensageiro/genética , Transcriptoma
16.
Sci Rep ; 10(1): 337, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941932

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) has the worst prognosis of all common cancers. However, divergent outcomes exist between patients, suggesting distinct underlying tumor biology. Here, we delineated this heterogeneity, compared interconnectivity between classification systems, and experimentally addressed the tumor biology that drives poor outcome. RNA-sequencing of 90 resected specimens and unsupervised classification revealed four subgroups associated with distinct outcomes. The worst-prognosis subtype was characterized by mesenchymal gene signatures. Comparative (network) analysis showed high interconnectivity with previously identified classification schemes and high robustness of the mesenchymal subtype. From species-specific transcript analysis of matching patient-derived xenografts we constructed dedicated classifiers for experimental models. Detailed assessments of tumor growth in subtyped experimental models revealed that a highly invasive growth pattern of mesenchymal subtype tumor cells is responsible for its poor outcome. Concluding, by developing a classification system tailored to experimental models, we have uncovered subtype-specific biology that should be further explored to improve treatment of a group of PDAC patients that currently has little therapeutic benefit from surgical treatment.


Assuntos
Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Carcinoma Ductal Pancreático/classificação , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/mortalidade , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Camundongos , Pessoa de Meia-Idade , Neoplasias Pancreáticas/classificação , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/mortalidade , Prognóstico , Modelos de Riscos Proporcionais , Análise de Sequência de RNA , Sequências de Repetição em Tandem , Transplante Heterólogo , Neoplasias Pancreáticas
17.
Cancer Cell ; 36(3): 319-336.e7, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31526760

RESUMO

The metastatic process of colorectal cancer (CRC) is not fully understood and effective therapies are lacking. We show that activation of NOTCH1 signaling in the murine intestinal epithelium leads to highly penetrant metastasis (100% metastasis; with >80% liver metastases) in KrasG12D-driven serrated cancer. Transcriptional profiling reveals that epithelial NOTCH1 signaling creates a tumor microenvironment (TME) reminiscent of poorly prognostic human CRC subtypes (CMS4 and CRIS-B), and drives metastasis through transforming growth factor (TGF) ß-dependent neutrophil recruitment. Importantly, inhibition of this recruitment with clinically relevant therapeutic agents blocks metastasis. We propose that NOTCH1 signaling is key to CRC progression and should be exploited clinically.


Assuntos
Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , Receptor Notch1/metabolismo , Animais , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/mortalidade , Conjuntos de Dados como Assunto , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/secundário , Masculino , Camundongos , Mutação , Ativação de Neutrófilo/efeitos dos fármacos , Ativação de Neutrófilo/genética , Neutrófilos/imunologia , Prognóstico , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptor Notch1/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Análise de Sobrevida , Fator de Crescimento Transformador beta/antagonistas & inibidores , Fator de Crescimento Transformador beta/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
18.
Int J Cancer ; 144(2): 366-371, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30151914

RESUMO

Patient-derived xenograft (PDX) models have become an important asset in translational cancer research. However, to provide a robust preclinical platform, PDXs need to accommodate the tumor heterogeneity that is observed in patients. Colorectal cancer (CRC) can be stratified into four consensus molecular subtypes (CMS) with distinct biological and clinical features. Surprisingly, using a set of CRC patients, we revealed the partial representation of tumor heterogeneity in PDX models. The epithelial subtypes, the largest subgroups of CRC subtype, were very ineffective in establishing PDXs, indicating the need for further optimization to develop an effective personalized therapeutic approach to CRC. Moreover, we showed that tumor cell proliferation was associated with successful PDX establishment and able to distinguish patient with poor clinical outcomes within CMS2 group.


Assuntos
Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Xenoenxertos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Humanos , Camundongos
19.
EMBO Mol Med ; 8(7): 745-60, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27221051

RESUMO

The heterogeneous nature of colorectal cancer (CRC) complicates prognosis and is suggested to be a determining factor in the efficacy of adjuvant therapy for individual patients. Based on gene expression profiling, CRC is currently classified into four consensus molecular subtypes (CMSs), characterized by specific biological programs, thus suggesting the existence of unifying developmental drivers for each CMS Using human organoid cultures, we investigated the role of such developmental drivers at the premalignant stage of distinct CRC subtypes and found that TGFß plays an important role in the development of the mesenchymal CMS4, which is of special interest due to its association with dismal prognosis. We show that in tubular adenomas (TAs), which progress to classical CRCs, the dominating response to TGFß is death by apoptosis. By contrast, induction of a mesenchymal phenotype upon TGFß treatment prevails in a genetically engineered organoid culture carrying a BRAF(V) (600E) mutation, constituting a model system for sessile serrated adenomas (SSAs). Our data indicate that TGFß signaling is already active in SSA precursor lesions and that TGFß is a critical cue for directing SSAs to the mesenchymal, poor-prognosis CMS4 of CRC.


Assuntos
Adenoma/patologia , Carcinogênese , Neoplasias Colorretais/patologia , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Humanos , Organoides
20.
Sci Rep ; 6: 19411, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26797113

RESUMO

The primary limiting factor for effective IVF treatment is successful embryo implantation. Recurrent implantation failure (RIF) is a condition whereby couples fail to achieve pregnancy despite consecutive embryo transfers. Here we describe the collection of gene expression profiles from mid-luteal phase endometrial biopsies (n = 115) from women experiencing RIF and healthy controls. Using a signature discovery set (n = 81) we identify a signature containing 303 genes predictive of RIF. Independent validation in 34 samples shows that the gene signature predicts RIF with 100% positive predictive value (PPV). The strength of the RIF associated expression signature also stratifies RIF patients into distinct groups with different subsequent implantation success rates. Exploration of the expression changes suggests that RIF is primarily associated with reduced cellular proliferation. The gene signature will be of value in counselling and guiding further treatment of women who fail to conceive upon IVF and suggests new avenues for developing intervention.


Assuntos
Implantação do Embrião/genética , Endométrio/metabolismo , Fertilização in vitro , Perfilação da Expressão Gênica , Infertilidade Feminina/genética , Adulto , Biópsia , Endométrio/patologia , Feminino , Regulação da Expressão Gênica , Humanos , Gravidez , Recidiva , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...