Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 261: 116464, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38861812

RESUMO

Recent findings on CRISPR-Cas enzymes with collateral DNAse/RNAse activity have led to new and innovative methods for pathogen detection. However, many CRISPR-Cas assays necessitate DNA pre-amplification to boost sensitivity, restricting their utility for point-of-care applications. Achieving higher sensitivity without DNA pre-amplification presents a significant challenge. In this study, we introduce a Terminal deoxynucleotidyl Transferase (TdT)-based amplification loop, creating a positive feedback mechanism within the CRISPR-Cas12a pathogen detection system. Upon recognizing pathogenic target DNA, Cas12a triggers trans-cleavage of a FRET reporter and a specific enhancer molecule oligonucleotide, indicated by the acronym POISER (Partial Or Incomplete Sites for crRNA recognition). POISER comprises half of a CRISPR-RNA recognition site, which is subsequently elongated by TdT enzymatic activity. This process, involving pathogen recognition-induced Cas12a cleavage and TdT elongation, results in a novel single-stranded DNA target. This target can subsequently be recognized by a POISER-specific crRNA, activating more Cas12a enzymes. Our study demonstrates that these POISER-cycles enhance the signal strength in fluorescent-based CRISPR-Cas12a assays. Although further refinement is desirable, POISER holds promise as a valuable tool for the detection of pathogens in point-of-care testing, surveillance, and environmental monitoring.

2.
Anal Chem ; 95(31): 11621-11631, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37495545

RESUMO

Proteases comprise the class of enzymes that catalyzes the hydrolysis of peptide bonds, thereby playing a pivotal role in many aspects of life. The amino acids surrounding the scissile bond determine the susceptibility toward protease-mediated hydrolysis. A detailed understanding of the cleavage specificity of a protease can lead to the identification of its endogenous substrates, while it is also essential for the design of inhibitors. Although many methods for protease activity and specificity profiling exist, none of these combine the advantages of combinatorial synthetic libraries, i.e., high diversity, equimolar concentration, custom design regarding peptide length, and randomization, with the sensitivity and detection power of mass spectrometry. Here, we developed such a method and applied it to study a group of bacterial metalloproteases that have the unique specificity to cleave between two prolines, i.e., Pro-Pro endopeptidases (PPEPs). We not only confirmed the prime-side specificity of PPEP-1 and PPEP-2, but also revealed some new unexpected peptide substrates. Moreover, we have characterized a new PPEP (PPEP-3) that has a prime-side specificity that is very different from that of the other two PPEPs. Importantly, the approach that we present in this study is generic and can be extended to investigate the specificity of other proteases.


Assuntos
Endopeptidases , Biblioteca de Peptídeos , Endopeptidases/química , Peptídeos/química , Peptídeo Hidrolases/metabolismo , Espectrometria de Massas em Tandem , Especificidade por Substrato
3.
PLoS Negl Trop Dis ; 17(1): e0011006, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36607891

RESUMO

BACKGROUND: Burkholderia mallei and Burkholderia pseudomallei are both potential biological threat agents. Melioidosis caused by B. pseudomallei is endemic in Southeast Asia and Northern Australia, while glanders caused by B. mallei infections are rare. Here we studied the proteomes of different B. mallei and B. pseudomallei isolates to determine species specific characteristics. METHODS: The expressed proteins of 5 B. mallei and 6 B. pseudomallei strains were characterized using liquid chromatography high-resolution tandem mass spectrometry (LC-HRMS/MS). Subsequently, expression of potential resistance and virulence related characteristics were analyzed and compared. RESULTS: Proteome analysis can be used for the identification of B. mallei and B. pseudomallei. Both species were identified based on >60 discriminative peptides. Expression of proteins potentially involved in antimicrobial resistance, AmrAB-OprA, BpeAB-OprB, BpeEF-OprC, PenA as well as several other efflux pump related proteins and putative ß-lactamases was demonstrated. Despite, the fact that efflux pump BpeAB-OprB was expressed in all isolates, no clear correlation with an antimicrobial phenotype and the efflux-pump could be established. Also consistent with the phenotypes, no amino acid mutations in PenA known to result in ß-lactam resistance could be identified. In all studied isolates, the expression of virulence (related) factors Capsule-1 and T2SS was demonstrated. The expression of T6SS-1 was demonstrated in all 6 B. pseudomallei isolates and in 2 of the 5 B. mallei isolates. In all, except one B. pseudomallei isolate, poly-beta-1,6 N-acetyl-D-glucosamine export porin (Pga), important for biofilm formation, was detected, which were absent in the proteomes of B. mallei. Siderophores, iron binding proteins, malleobactin and malleilactone are possibly expressed in both species under standard laboratory growth conditions. Expression of multiple proteins from both the malleobactin and malleilactone polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) clusters was demonstrated in both species. All B. pseudomallei expressed at least seven of the nine proteins of the bactobolin synthase cluster (bactobolin, is a ribosome targeting antibiotic), while only in one B. mallei isolate expression of two proteins of this synthase cluster was identified. CONCLUSIONS: Analyzing the expressed proteomes revealed differences between B. mallei and B. pseudomallei but also between isolates from the same species. Proteome analysis can be used not only to identify B. mallei and B. pseudomallei but also to characterize the presence of important factors that putatively contribute to the pathogenesis of B. mallei and B. pseudomallei.


Assuntos
Burkholderia mallei , Burkholderia pseudomallei , Melioidose , Animais , Burkholderia mallei/genética , Proteoma/metabolismo , Virulência , Antibacterianos/farmacologia
4.
Biol Methods Protoc ; 7(1): bpac015, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35989704

RESUMO

CRISPR-Cas (CC)-based detection technologies have some exceptional features, which hold the promise of developing into the next-generation diagnostic platforms. One of these features is the ability to trigger non-specific single-stranded DNA/RNA cleavage activity after specific target recognition and Cas enzyme activation. This cleavage activity can be visualized either by single-stranded DNA/RNA fluorescence resonance energy transfer quenching reporters or via lateral flow strips, which separate and detect the cleaved reporters. In a previous study, we reported coupling CC-cleavage activity with the enzyme terminal deoxynucleotidyl transferase (TdT) that elongates cleaved ssDNA reporter fragments with dTTP nucleotides. These elongated poly(thymine) tails then act as scaffolds for the formation of copper nanoparticles which generate a bright fluorescent signal upon UV excitation. In the current study, we visualize the poly(thymine) tails on lateral flow strips, using different combinations of biotinylated or fluorescein-labeled nucleotides, various reporters, and capture oligos. One particular approach, using a fluorescein reporter, reached a target sensitivity of <1 pM and was named Cas activity assay on a strip and was tested using Bacillus anthracis genomic DNA.

5.
Curr Res Microb Sci ; 2: 100024, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34841315

RESUMO

Pro-Pro-endopeptidases (PPEP, EC 3.4.24.89) are secreted, zinc metalloproteases that have the unusual capacity to cleave a peptide bond between two prolines, a bond that is generally less sensitive to proteolytic cleavage. Two well studied members of the family are PPEP-1 and PPEP-2, produced by Clostridioides difficile, a human pathogen, and Paenibacillus alvei, a bee secondary invader, respectively. Both proteases seem to be involved in mediating bacterial adhesion by cleaving cell surface anchor proteins on the bacterium itself. By using basic alignment and phylogenetic profiling analysis, this work shows that the complete family of proteins that contain a PPEP domain includes proteins from more than 130 species spread over 9 genera. These analyses also suggest that the PPEP domain spread through horizontal gene transfer events between species within the Firmicutes' classes Bacilli and Clostridia. Bacterial species containing PPEP homologs are found in diverse habitats, varying from human pathogens and gut microbiota to free-living bacteria, which were isolated from various environments, including extreme conditions such as hot springs, desert soil and salt lakes. The phylogenetic tree reveals the relationships between family members and suggests that smaller subgroups could share cleavage specificity, substrates and functional similarity. Except for PPEP-1 and PPEP-2, no cleavage specificity, specific physiological target, or function has been assigned for any of the other PPEP-family members. Some PPEP proteins have acquired additional domains that recognize and bind noncovalently to various elements of the bacterial peptidoglycan cell-wall, anchoring these PPEPs. Secreted or anchored to the cell-wall surface PPEP proteins seem to perform various functions.

6.
J Am Chem Soc ; 143(40): 16777-16785, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34590851

RESUMO

The most recent global health crisis caused by the SARS-CoV-2 outbreak and the alarming use of chemical warfare agents highlight the necessity to produce efficient protective clothing and masks against biohazard and chemical threats. However, the development of a multifunctional protective textile is still behind to supply adequate protection for the public. To tackle this challenge, we designed multifunctional and regenerable N-chlorine based biocidal and detoxifying textiles using a robust zirconium metal-organic framework (MOF), UiO-66-NH2, as a chlorine carrier which can be easily coated on textile fibers. A chlorine bleaching converted the amine groups located on the MOF linker to active N-chlorine structures. The fibrous composite exhibited rapid biocidal activity against both Gram-negative bacteria (E. coli) and Gram-positive bacteria (S. aureus) with up to a 7 log reduction within 5 min for each strain as well as a 5 log reduction of SARS-CoV-2 within 15 min. Moreover, the active chlorine loaded MOF/fiber composite selectively and rapidly degraded sulfur mustard and its chemical simulant 2-chloroethyl ethyl sulfide (CEES) with half-lives less than 3 minutes. The versatile MOF-based fibrous composite designed here has the potential to serve as protective cloth against both biological and chemical threats.


Assuntos
Antibacterianos/farmacologia , Antivirais/farmacologia , Substâncias para a Guerra Química/química , Cloro/farmacologia , Estruturas Metalorgânicas/farmacologia , Roupa de Proteção , Animais , Antibacterianos/síntese química , Antivirais/síntese química , Linhagem Celular , Cloro/química , Escherichia coli/efeitos dos fármacos , Halogenação , Humanos , Estruturas Metalorgânicas/síntese química , Testes de Sensibilidade Microbiana , Gás de Mostarda/análogos & derivados , Gás de Mostarda/química , Oxirredução , SARS-CoV-2/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Têxteis , Zircônio/química
7.
Biol Methods Protoc ; 6(1): bpaa020, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33628946

RESUMO

Fluorescence-based diagnostic tools are attractive and versatile tests with multiple advantages: ease of use, sensitivity and rapid results. The advent of CRISPR-Cas technology has created new avenues for the development of diagnostic testing tools. In this study, by effectively combining the specific functions of two enzymes, CRISPR-Cas12a and terminal deoxynucleotidyl transferase (TdT), we developed a DNA detection assay that generates copper nanoparticles (CuNPs) that are easily visible to the naked eye under UV-light; we named this detection assay Cas12a Activated Nuclease poly-T Reporter Illuminating Particles (CANTRIP). Upon specific target DNA recognition by Cas12a, single-stranded DNA (ssDNA) reporter oligos with blocked 3'-ends are cut into smaller ssDNA fragments, thereby generating neo 3'-hydroxyl moieties. TdT subsequently elongates these newly formed ssDNA fragments, incorporating only dTTP nucleotides, and these poly(thymine)-tails subsequently function as scaffolds for the formation of CuNPs. These CuNPs produce a bright fluorescent signal upon UV excitation, and thus, this bright orange signal indicates the presence of target DNA, which in this proof-of-concept study consisted of anthrax lethal factor plasmid DNA. CANTRIP, which combines two detection platforms consisting of CRISPR-Cas12a and fluorescent CuNPs into a single reaction, appears to be a robust, low-cost and simple diagnostic tool.

8.
Int J Med Microbiol ; 310(1): 151376, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31784214

RESUMO

To improve the preparedness against exposure to highly pathogenic bacteria and to anticipate the wide variety of bacteria that can cause bloodstream infections (BSIs), a safe, unbiased and highly accurate identification method was developed. Our liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based method can identify highly pathogenic bacteria, their near-neighbors and bacteria that are common causes of BSIs directly from positive blood culture flasks. The developed Peptide-Based Microbe Detection Engine (http://proteome2pathogen.com) relies on a two-step workflow: a genus-level search followed by a species-level search. This strategy enables the rapid identification of microorganisms based on the analyzed proteome. This method was successfully used to identify strains of Bacillus anthracis, Brucella abortus, Brucella melitensis, Brucella suis, Burkholderia pseudomallei, Burkholderia mallei, Francisella tularensis, Yersinia pestis and closely related species from simulated blood culture flasks. This newly developed LC-MS/MS method is a safe and rapid method for accurately identifying bacteria directly from positive blood culture flasks.


Assuntos
Bactérias/isolamento & purificação , Técnicas Bacteriológicas , Hemocultura/métodos , Animais , Bacillus/isolamento & purificação , Brucella/isolamento & purificação , Burkholderia/isolamento & purificação , Cromatografia Líquida , Francisella/isolamento & purificação , Proteômica , Ovinos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem , Yersinia/isolamento & purificação
9.
Sci Rep ; 8(1): 8181, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29802257

RESUMO

The development of antibiotic resistance during treatment is a threat to patients and their environment. Insight in the mechanisms of resistance development is important for appropriate therapy and infection control. Here, we describe how through the application of mass spectrometry-based proteomics, a novel beta-lactamase Axc was identified as an indicator of acquired carbapenem resistance in a clinical isolate of Achromobacter xylosoxidans. Comparative proteomic analysis of consecutively collected susceptible and resistant isolates from the same patient revealed that high Axc protein levels were only observed in the resistant isolate. Heterologous expression of Axc in Escherichia coli significantly increased the resistance towards carbapenems. Importantly, direct Axc mediated hydrolysis of imipenem was demonstrated using pH shift assays and 1H-NMR, confirming Axc as a legitimate carbapenemase. Whole genome sequencing revealed that the susceptible and resistant isolates were remarkably similar. Together these findings provide a molecular context for the fast development of meropenem resistance in A. xylosoxidans during treatment and demonstrate the use of mass spectrometric techniques in identifying novel resistance determinants.


Assuntos
Achromobacter denitrificans/efeitos dos fármacos , Achromobacter denitrificans/metabolismo , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana , Meropeném/farmacologia , Proteômica , beta-Lactamases/metabolismo , Achromobacter denitrificans/genética , Sequência de Aminoácidos , Humanos , beta-Lactamases/química , beta-Lactamases/genética
10.
J Biol Chem ; 293(28): 11154-11165, 2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-29794027

RESUMO

Pro-Pro endopeptidases (PPEPs) belong to a recently discovered family of proteases capable of hydrolyzing a Pro-Pro bond. The first member from the bacterial pathogen Clostridium difficile (PPEP-1) cleaves two C. difficile cell-surface proteins involved in adhesion, one of which is encoded by the gene adjacent to the ppep-1 gene. However, related PPEPs may exist in other bacteria and may shed light on substrate specificity in this enzyme family. Here, we report on the homolog of PPEP-1 in Paenibacillus alvei, which we denoted PPEP-2. We found that PPEP-2 is a secreted metalloprotease, which likewise cleaved a cell-surface protein encoded by an adjacent gene. However, the cleavage motif of PPEP-2, PLP↓PVP, is distinct from that of PPEP-1 (VNP↓PVP). As a result, an optimal substrate peptide for PPEP-2 was not cleaved by PPEP-1 and vice versa. To gain insight into the specificity mechanism of PPEP-2, we determined its crystal structure at 1.75 Å resolution and further confirmed the structure in solution using small-angle X-ray scattering (SAXS). We show that a four-amino-acid loop, which is distinct in PPEP-1 and -2 (GGST in PPEP-1 and SERV in PPEP-2), plays a crucial role in substrate specificity. A PPEP-2 variant, in which the four loop residues had been swapped for those from PPEP-1, displayed a shift in substrate specificity toward PPEP-1 substrates. Our results provide detailed insights into the PPEP-2 structure and the structural determinants of substrate specificity in this new family of PPEP proteases.


Assuntos
Proteínas de Bactérias/metabolismo , Dipeptídeos/metabolismo , Endopeptidases/metabolismo , Paenibacillus/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Cristalografia por Raios X , Dipeptídeos/química , Endopeptidases/química , Modelos Moleculares , Paenibacillus/crescimento & desenvolvimento , Conformação Proteica , Homologia de Sequência , Especificidade por Substrato
11.
Mol Microbiol ; 105(5): 663-673, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28636257

RESUMO

In the past decade, Clostridium difficile has emerged as an important gut pathogen. This anaerobic, Gram-positive bacterium is the main cause of infectious nosocomial diarrhea. Whereas much is known about the mechanism through which the C. difficile toxins cause diarrhea, relatively little is known about the dynamics of adhesion and motility, which is mediated by cell surface proteins. This review will discuss the recent advances in our understanding of the sortase-mediated covalent attachment of cell surface (adhesion) proteins to the peptidoglycan layer of C. difficile and their release through the action of a highly specific secreted metalloprotease (Pro-Pro endopeptidase 1, PPEP-1). Specific emphasis will be on a model in which PPEP-1 and its substrates control the switch from a sessile to motile phenotype in C. difficile, and how this is regulated by the cyclic dinucleotide c-di-GMP (3'-5' cyclic dimeric guanosine monophosphate).


Assuntos
Adesão Celular/fisiologia , Clostridioides difficile/metabolismo , GMP Cíclico/análogos & derivados , Endopeptidases/metabolismo , Proteínas de Bactérias/metabolismo , Biofilmes , Infecção Hospitalar , GMP Cíclico/metabolismo , Dipeptídeos , Regulação Bacteriana da Expressão Gênica/genética , Humanos , Proteínas de Membrana/metabolismo , Metaloproteases/metabolismo , Peptidoglicano/metabolismo
12.
J Biol Chem ; 291(25): 13286-300, 2016 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-27076635

RESUMO

Filamentation induced by cAMP (Fic) domain proteins have been shown to catalyze the transfer of the AMP moiety from ATP onto a protein target. This type of post-translational modification was recently shown to play a crucial role in pathogenicity mediated by two bacterial virulence factors. Herein we characterize a novel Fic domain protein that we identified from the human pathogen Clostridium difficile The crystal structure shows that the protein adopts a classical all-helical Fic fold, which belongs to class II of Fic domain proteins characterized by an intrinsic N-terminal autoinhibitory α-helix. A conserved glutamate residue in the inhibitory helix motif was previously shown in other Fic domain proteins to prevent proper binding of the ATP γ-phosphate. However, here we demonstrate that both ATP binding and autoadenylylation activity of the C. difficile Fic domain protein are independent of the inhibitory motif. In support of this, the crystal structure of a mutant of this Fic protein in complex with ATP reveals that the γ-phosphate adopts a conformation unique among Fic domains that seems to override the effect of the inhibitory helix. These results provide important structural insight into the adenylylation reaction mechanism catalyzed by Fic domains. Our findings reveal the presence of a class II Fic domain protein in the human pathogen C. difficile that is not regulated by autoinhibition and challenge the current dogma that all class I-III Fic domain proteins are inhibited by the inhibitory α-helix.


Assuntos
Proteínas de Bactérias/metabolismo , Clostridioides difficile/metabolismo , AMP Cíclico/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Clostridioides difficile/química , Cristalografia por Raios X , Enterocolite Pseudomembranosa/microbiologia , Humanos , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína
13.
Anal Chem ; 88(11): 5996-6003, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27123572

RESUMO

The introduction of standardized matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) platforms in the medical microbiological practice has revolutionized the way microbial species identification is performed on a daily basis. To a large extent, this is due to the ease of operation. Acquired spectra are compared to profiles obtained from cultured colonies present in a reference spectra database. It is fast and reliable, and costs are low compared to previous diagnostic approaches. However, the low resolution and dynamic range of the MALDI-TOF profiles have shown limited applicability for the discrimination of different bacterial strains, as achieved with typing based on genetic markers. This is pivotal in cases where certain strains are associated with, e.g., virulence or antibiotic resistance. Ultrahigh resolution MALDI-FTICR MS allows the measurement of small proteins at isotopic resolution and can be used to analyze complex mixtures with increased dynamic range and higher precision than MALDI-TOF MS, while still generating results in a similar time frame. Here, we propose to use ultrahigh resolution 15T MALDI-Fourier transform ion cyclotron resonance (FTICR) MS to discriminate clinically relevant bacterial strains after species identification performed by MALDI-TOF MS. We used a collection of well characterized Pseudomonas aeruginosa strains, featuring distinct antibiotic resistance profiles, and isolates obtained during hospital outbreaks. Following cluster analysis based on amplification fragment length polymorphism (AFLP), these strains were grouped into three different clusters. The same clusters were obtained using protein profiles generated by MALDI-FTICR MS. Subsequent intact protein analysis by electrospray ionization (ESI)-collision-induced dissociation (CID)-FTICR MS was applied to identify protein isoforms that contribute to the separation of the different clusters, illustrating the additional advantage of this analytical platform.


Assuntos
Pseudomonas aeruginosa/classificação , Pseudomonas aeruginosa/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Análise por Conglomerados , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/genética
14.
FEBS Lett ; 589(24 Pt B): 3952-8, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26522134

RESUMO

The Clostridium difficile cd2830 gene product is a secreted metalloprotease, named Pro-Pro endopeptidase (PPEP-1). PPEP-1 cleaves C. difficile cell surface proteins (e.g. CD2831). Here, we confirmed that PPEP-1 has a unique preference for prolines surrounding the scissile bond. Moreover, we show that it exhibits a high preference for an asparagine at the P2 position and hydrophobic residues at the P3 position. Using a PPEP-1 knockout C. difficile strain, we demonstrate that the removal of the collagen binding protein CD2831 is fully attributable to PPEP-1 activity. The PPEP-1 knockout strain demonstrated higher affinity for collagen type I with attenuated virulence in hamsters.


Assuntos
Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Clostridioides difficile/fisiologia , Colágeno Tipo I/metabolismo , Proteínas de Membrana/metabolismo , Metaloendopeptidases/metabolismo , Motivos de Aminoácidos , Animais , Proteínas de Bactérias/química , Clostridioides difficile/enzimologia , Clostridioides difficile/patogenicidade , Feminino , Técnicas de Inativação de Genes , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/química , Proteínas de Membrana/genética , Mesocricetus , Metaloendopeptidases/genética , Mutação , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteólise , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Especificidade por Substrato , Virulência
15.
16.
FEBS Lett ; 588(23): 4325-33, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25305382

RESUMO

Covalent attachment of surface proteins to the cell wall of Gram-positive bacteria requires a sortase-mediated transpeptidation reaction. In almost all Gram-positive bacteria, the housekeeping sortase, sortase A, recognizes the canonical recognition sequence LPXTG (X=any amino acid). The human pathogen Clostridium difficile carries a single putative sortase gene (cd2718) but neither transpeptidation activity nor specificity of CD2718 has been investigated. We produced recombinant CD2718 and examined its transpeptidation activity in vitro using synthetic peptides and MALDI-ToF(-ToF) MS analysis. We demonstrate that CD2718 has sortase activity with specificity for a (S/P)PXTG motif and can accommodate diaminopimelic acid as a substrate for transpeptidation.


Assuntos
Aminoaciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Clostridioides difficile/enzimologia , Cisteína Endopeptidases/metabolismo , Ácido Diaminopimélico/metabolismo , Peptídeos/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Aminoaciltransferases/biossíntese , Aminoaciltransferases/química , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/química , Biologia Computacional , Cisteína Endopeptidases/biossíntese , Cisteína Endopeptidases/química , Dados de Sequência Molecular , Peptídeos/química , Ligação Proteica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
17.
Anal Chem ; 86(18): 9154-61, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25155175

RESUMO

In a time in which the spread of multidrug resistant microorganisms is ever increasing, there is a need for fast and unequivocal identification of suspect organisms to supplement existing techniques in the clinical laboratory, especially in single bacterial colonies. Mass-spectrometry coupled with efficient peptide separation techniques offer great potential for identification of resistant-related proteins in complex microbiological samples in an unbiased manner. Here, we developed a capillary electrophoresis-electrospray ionization-tandem mass spectrometry CE-ESI-MS/MS bottom-up proteomics workflow for sensitive and specific peptide analysis with the emphasis on the identification of ß-lactamases (carbapenemases OXA-48 and KPC in particular) in bacterial species. For this purpose, tryptic peptides from whole cell lysates were analyzed by sheathless CE-ESI-MS/MS and proteins were identified after searching of the spectral data against bacterial protein databases. The CE-ESI-MS/MS workflow was first evaluated using a recombinant TEM-1 ß-lactamase, resulting in 68% of the amino acid sequence being covered by 20 different unique peptides. Subsequently, a resistant and susceptible Escherichia coli lab strain were analyzed and based on the observed ß-lactamase peptides, the two strains could easily be discriminated. Finally, the method was tested in an unbiased setup using a collection of in-house characterized OXA-48 (n = 17) and KPC (n = 10) clinical isolates. The developed CE-ESI-MS/MS method was able to identify the presence of OXA-48 and KPC in all of the carbapenemase positive samples, independent of species and degree of susceptibility. Four negative controls were tested and classified as negative by this method. Furthermore, a number of extended-spectrum beta-lactamases (ESBL) were identified in the same analyses, confirming the multiresistant character in 19 out of 27 clinical isolates. Importantly, the method performed equally well on protein lysates from single colonies. As such, it demonstrates CE-ESI-MS/MS as a potential next generation mass spectrometry platform within the clinical microbiology laboratory.


Assuntos
Proteínas de Bactérias/análise , Eletroforese Capilar , Bactérias Gram-Negativas/enzimologia , Espectrometria de Massas por Ionização por Electrospray , beta-Lactamases/análise , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Bases de Dados de Proteínas , Farmacorresistência Bacteriana Múltipla , Escherichia coli/metabolismo , Dados de Sequência Molecular , Peptídeos/análise , Peptídeos/isolamento & purificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tripsina/metabolismo , beta-Lactamases/genética , beta-Lactamases/metabolismo
18.
Plant J ; 80(1): 136-48, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25039268

RESUMO

We explored genetic variation by sequencing a selection of 84 tomato accessions and related wild species representative of the Lycopersicon, Arcanum, Eriopersicon and Neolycopersicon groups, which has yielded a huge amount of precious data on sequence diversity in the tomato clade. Three new reference genomes were reconstructed to support our comparative genome analyses. Comparative sequence alignment revealed group-, species- and accession-specific polymorphisms, explaining characteristic fruit traits and growth habits in the various cultivars. Using gene models from the annotated Heinz 1706 reference genome, we observed differences in the ratio between non-synonymous and synonymous SNPs (dN/dS) in fruit diversification and plant growth genes compared to a random set of genes, indicating positive selection and differences in selection pressure between crop accessions and wild species. In wild species, the number of single-nucleotide polymorphisms (SNPs) exceeds 10 million, i.e. 20-fold higher than found in most of the crop accessions, indicating dramatic genetic erosion of crop and heirloom tomatoes. In addition, the highest levels of heterozygosity were found for allogamous self-incompatible wild species, while facultative and autogamous self-compatible species display a lower heterozygosity level. Using whole-genome SNP information for maximum-likelihood analysis, we achieved complete tree resolution, whereas maximum-likelihood trees based on SNPs from ten fruit and growth genes show incomplete resolution for the crop accessions, partly due to the effect of heterozygous SNPs. Finally, results suggest that phylogenetic relationships are correlated with habitat, indicating the occurrence of geographical races within these groups, which is of practical importance for Solanum genome evolution studies.


Assuntos
Variação Genética , Genoma de Planta/genética , Solanum lycopersicum/genética , Cruzamento , Mapeamento Cromossômico , DNA de Plantas/química , DNA de Plantas/genética , Frutas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Dados de Sequência Molecular , Fenótipo , Filogenia , Polimorfismo de Nucleotídeo Único , Alinhamento de Sequência , Análise de Sequência de DNA , Especificidade da Espécie
19.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 6): 827-31, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24915103

RESUMO

Fic domains in proteins are found in abundance in nature from the simplest prokaryotes to animals. Interestingly, Fic domains found in two virulence factors of Gram-negative bacteria have recently been demonstrated to catalyse the transfer of the AMP moiety from ATP to small host GTPases. This post-translational modification has attracted considerable interest and a role for adenylylation in pathology and physiology is emerging. This work was aimed at the structural characterization of a newly identified Fic protein of the Gram-positive bacterium Clostridium difficile. A constitutively active inhibitory helix mutant of C. difficile Fic was overexpressed in Escherichia coli, purified and crystallized by the vapour-diffusion technique. Preliminary X-ray crystallographic analysis shows that the crystals diffract to at least 1.68 Šresolution at a synchrotron X-ray source. The crystals belonged to the orthorhombic space group P212121, with unit-cell parameters a=45.6, b=80.8, c=144.7 Å, α=ß=γ=90°. Two molecules per asymmetric unit corresponds to a Matthews coefficient of 2.37 Å3 Da(-1) and a solvent content of 48%.


Assuntos
Proteínas de Bactérias/química , Clostridioides difficile/química , Cristalografia por Raios X/métodos , Proteínas de Bactérias/genética , Clonagem Molecular , Cristalização
20.
Mol Cell Proteomics ; 13(5): 1231-44, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24623589

RESUMO

Bacterial secreted proteins constitute a biologically important subset of proteins involved in key processes related to infection such as adhesion, colonization, and dissemination. Bacterial extracellular proteases, in particular, have attracted considerable attention, as they have been shown to be indispensable for bacterial virulence. Here, we analyzed the extracellular subproteome of Clostridium difficile and identified a hypothetical protein, CD2830, as a novel secreted metalloprotease. Following the identification of a CD2830 cleavage site in human HSP90ß, a series of synthetic peptide substrates was used to identify the favorable CD2830 cleavage motif. This motif was characterized by a high prevalence of proline residues. Intriguingly, CD2830 has a preference for cleaving Pro-Pro bonds, unique among all hitherto described proteases. Strikingly, within the C. difficile proteome two putative adhesion molecules, CD2831 and CD3246, were identified that contain multiple CD2830 cleavage sites (13 in total). We subsequently found that CD2830 efficiently cleaves CD2831 between two prolines at all predicted cleavage sites. Moreover, native CD2830, secreted by live cells, cleaves endogenous CD2831 and CD3246. These findings highlight CD2830 as a highly specific endoproteinase with a preference for proline residues surrounding the scissile bond. Moreover, the efficient cleavage of two putative surface adhesion proteins points to a possible role of CD2830 in the regulation of C. difficile adhesion.


Assuntos
Proteínas de Bactérias/metabolismo , Clostridioides difficile/enzimologia , Proteínas de Membrana/genética , Metaloproteases/metabolismo , Prolina/metabolismo , Sinais Direcionadores de Proteínas , Proteínas de Bactérias/genética , Domínio Catalítico , Infecções por Clostridium/parasitologia , Evolução Molecular , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Metaloproteases/química , Metaloproteases/genética , Modelos Moleculares , Filogenia , Proteoma/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...