Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38466933

RESUMO

OBJECTIVES: It is well-known that long-term osteoarthritis prognosis is not improved by corticosteroid treatments. Here we investigate what could underlie this phenomenon by measuring the short term corticosteroid response of OA-Mf. METHODS: We determined the genome-wide transcriptomic response to corticosteroids of end-stage osteoarthritic joint synovial macrophages (OA-Mf). This was compared with LPS-tolerized and ß-glucan-trained circulating blood monocyte-derived macrophage models. RESULTS: Upon corticosteroid stimulation, the trained and tolerized macrophages significantly alter the abundance of 201 and 257 RNA transcripts, respectively. By contrast, by the same criteria, OA-Mf have a very restricted corticosteroid response of only 12 RNA transcripts. Furthermore, while metalloproteinases 1, -2, -3 and -10 expression clearly distinguish OA-Mf from both the tolerized and trained macrophage models, OA-Mf Interleukin 1 (IL1), chemokine (CXCL) and cytokine (CCL) family member profiles resemble the tolerized macrophage model, with the exception that OA-Mf show high levels of CCL20. CONCLUSION: Terminal osteoarthritis joints therefore harbor macrophages with an inflammatory state that closely resembles the tolerized macrophage state and this is compounded by a weak corticosteroid response capacity that may explain the lack of positive long-term effects of corticosteroid treatment for osteoarthritis patients.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38216750

RESUMO

OBJECTIVES: Macrophages are key orchestrators of the osteoarthritis (OA)-associated inflammatory response. Macrophage phenotype is dependent on environmental cues like the inflammatory factor S100A8/A9. Here, we investigated how S100A9 exposure during monocyte-to-macrophage differentiation affects macrophage phenotype and function. METHODS: OA synovium cellular composition was determined using flow cytometry and multiplex immunohistochemistry. Healthy donor monocytes were differentiated towards M1- and M2-like macrophages in presence of S100A9. Macrophage markers were measured using flow cytometry and phagocytic activity was determined using pHrodo Red Zymosan A BioParticles. Gene expression was determined using qPCR. Protein secretion was measured using Luminex and ELISA. RESULTS: Macrophages were the dominant leucocyte subpopulation in OA synovium. They mainly presented with a M2-like phenotype, although the majority also expressed M1-like macrophage markers. Long-term exposure to S100A9 during monocyte-to-macrophage differentiation increased M2-like macrophage markers CD163 and CD206 in M1-like and M2-like differentiated cells. In addition, M1-like macrophage markers were increased in M1-like, but decreased in M2-like differentiated macrophages. In agreement with this mixed phenotype, S100A9 stimulation modestly increased expression and secretion of pro-inflammatory markers and catabolic enzymes, but also increased expression and secretion of anti-inflammatory/anabolic markers. In accordance with the upregulation of M2-like macrophage markers, S100A9 increased phagocytic activity. Finally, we indeed observed a strong association between S100A8 and S100A9 expression and the M2-like/M1-like macrophage ratio in end-stage OA synovium. CONCLUSION: Chronic S100A8/A9 exposure during monocyte-to-macrophage differentiation favours differentiation towards a M2-like macrophage phenotype. The properties of these cells could help explain the catabolic/anabolic dualism in established OA joints with low-grade inflammation.

3.
Rheumatology (Oxford) ; 63(4): 1180-1188, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37341635

RESUMO

OBJECTIVES: OA is characterized by cartilage degeneration and persistent pain. The majority of OA patients present with synovitis, which is associated with increased cartilage damage. Activated synovial macrophages are key contributors to joint destruction. Therefore, a marker that reflects the activation of these cells could be a valuable tool to characterize the destructive potential of synovitis and benefit monitoring of OA. Here, we aimed to investigate the use of CD64 (FcγRI) as a marker to characterize the damaging potential of synovitis in OA. METHODS: Synovial biopsies were obtained from end-stage OA patients that underwent joint replacement surgery. CD64 protein expression and localization was evaluated using immunohistochemistry and immunofluorescence and quantified using flow cytometry. qPCR was performed to measure the expression of FCGR1 and OA-related genes in synovial biopsies, and in primary chondrocytes and primary fibroblasts stimulated with OA conditioned medium (OAS-CM). RESULTS: Our data exposed a wide range of CD64 expression in OA synovium and showed positive correlations between FCGR1 and S100A8, S100A9, IL1B, IL6 and MMP1/2/3/9/13 expression. CD64 protein correlated with MMP1, MMP3, MMP9, MMP13 and S100A9. Furthermore, we observed that synovial CD64 protein levels in source tissue for OAS-CM significantly associated with the OAS-CM-induced expression of MMP1, MMP3 and especially ADAMTS4 in cultured fibroblasts, but not chondrocytes. CONCLUSION: Together, these results indicate that synovial CD64 expression is associated with the expression of proteolytic enzymes and inflammatory markers related to structural damage in OA. CD64 therefore holds promise as marker to characterize the damaging potential of synovitis.


Assuntos
Osteoartrite , Sinovite , Humanos , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 3 da Matriz , Osteoartrite/metabolismo , Sinovite/patologia , Calgranulina B/metabolismo , Membrana Sinovial/metabolismo
4.
Rheumatology (Oxford) ; 63(3): 608-618, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37788083

RESUMO

Local and systemic low-grade inflammation, mainly involving the innate immune system, plays an important role in the development of OA. A receptor playing a key role in initiation of this inflammation is the pattern-recognition receptor Toll-like receptor 4 (TLR4). In the joint, various ligands for TLR4, many of which are damage-associated molecular patterns (DAMPs), are present that can activate TLR4 signalling. This leads to the production of pro-inflammatory and catabolic mediators that cause joint damage. In this narrative review, we will first discuss the involvement of TLR4 ligands and signalling in OA. Furthermore, we will provide an overview of methods for inhibit, TLR4 signalling by RNA interference, neutralizing anti-TLR4 antibodies, small molecules and inhibitors targeting the TLR4 co-receptor MD2. Finally, we will focus on possible applications and challenges of these strategies in the dampening of inflammation in OA.


Assuntos
Osteoartrite , Receptor 4 Toll-Like , Humanos , Inflamação , Transdução de Sinais , Alarminas
5.
PeerJ ; 11: e15482, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37366428

RESUMO

Background: Osteoarthritis (OA) is a progressive joint disease and a major cause of chronic pain in adults. The prevalence of OA is higher in female patients, who tend to have worse OA outcomes, partially due to pain. The association between joint pain and OA pathology is often inconclusive. Preclinical research studies have largely overlooked sex as a potential determinant in joint pain during OA. This study aimed to investigate the role of sex in joint pain in the collagenase-induced OA (CiOA) model and its link with joint pathology. Methods: Multiple aspects of pain were evaluated during identically executed experiments of CiOA in male and female C57BL/6J mice. Cartilage damage, osteophyte formation, synovial thickness, and cellularity were assessed by histology on day 56. The association between pain and pathology was investigated, disaggregated by sex. Results: Differences in pain behavior between sexes were found in the majority of the evaluated pain methods. Females displayed lower weight bearing ability in the affected leg compared to males during the early phase of the disease, however, the pathology at the end stage was comparable between sexes. In the second cohort, males displayed increased mechanical sensitivity in the affected joint compared to females but also showed more cartilage damage at the end stage of the model. Within this cohort, gait analysis showed varied results. Males used the affected paw less often and displayed dynamic weight-bearing compensation in the early phase of the model. These differences were not observed in females. Other evaluated parameters displayed comparable gait behavior between males and females. A detailed analysis of individual mice revealed that seven out of 10 pain measurements highly correlated with OA histopathology in females (Pearson r range: 0.642-0.934), whereas in males this measurement was only two (Pearson r range: 0.645-0.748). Conclusion: Our data show that sex is a determinant in the link between pain-related behavior with OA features. Therefore, to accurately interpret pain data it is crucial to segregate data analysis by sex to draw the correct mechanistic conclusion.


Assuntos
Osteoartrite , Camundongos , Masculino , Feminino , Animais , Camundongos Endogâmicos C57BL , Osteoartrite/etiologia , Dor/etiologia , Artralgia/complicações , Marcha
6.
Rheumatology (Oxford) ; 62(1): 42-51, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-35863051

RESUMO

Synovial macrophages are key mediators of OA pathology, and skewing of macrophage phenotype in favour of an M1-like phenotype is thought to underlie the chronicity of synovial inflammation in OA. Components of the metabolic syndrome (MetS), such as dyslipidaemia, can affect macrophage phenotype and function, which could explain the link between MetS and OA development. Recently published studies have provided novel insights into the different origins and heterogeneity of synovial macrophages. Considering these findings, we propose an important role for monocyte-derived macrophages in particular, as opposed to yolk-sac derived residential macrophages, in causing a pro-inflammatory phenotype shift. We will further explain how this can start even prior to synovial infiltration; in the circulation, monocytes can be trained by metabolic factors such as low-density lipoprotein to become extra responsive to chemokines and damage-associated molecular patterns. The concept of innate immune training has been widely studied and implicated in atherosclerosis pathology, but its involvement in OA remains uncharted territory. Finally, we evaluate the implications of these insights for targeted therapy directed to macrophages and metabolic factors.


Assuntos
Síndrome Metabólica , Osteoartrite , Humanos , Monócitos/metabolismo , Lipoproteínas LDL/metabolismo , Osteoartrite/metabolismo , Inflamação/metabolismo , Síndrome Metabólica/complicações , Fatores de Risco , Membrana Sinovial/metabolismo
7.
Cells ; 11(7)2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35406794

RESUMO

During osteoarthritis (OA), hypertrophy-like chondrocytes contribute to the disease process. TGF-ß's signaling pathways can contribute to a hypertrophy(-like) phenotype in chondrocytes, especially at high doses of TGF-ß. In this study, we examine which transcription factors (TFs) are activated and involved in TGF-ß-dependent induction of a hypertrophy-like phenotype in human OA chondrocytes. We found that TGF-ß, at levels found in synovial fluid in OA patients, induces hypertrophic differentiation, as characterized by increased expression of RUNX2, COL10A1, COL1A1, VEGFA and IHH. Using luciferase-based TF activity assays, we observed that the expression of these hypertrophy genes positively correlated to SMAD3:4, STAT3 and AP1 activity. Blocking these TFs using specific inhibitors for ALK-5-induced SMAD signaling (5 µM SB-505124), JAK-STAT signaling (1 µM Tofacitinib) and JNK signaling (10 µM SP-600125) led to the striking observation that only SB-505124 repressed the expression of hypertrophy factors in TGF-ß-stimulated chondrocytes. Therefore, we conclude that ALK5 kinase activity is essential for TGF-ß-induced expression of crucial hypertrophy factors in chondrocytes.


Assuntos
Condrócitos , Osteoartrite , Condrócitos/metabolismo , Humanos , Hipertrofia/metabolismo , Osteoartrite/genética , Osteoartrite/metabolismo , Fenótipo , Fator de Crescimento Transformador beta/metabolismo , Fatores de Crescimento Transformadores/genética , Fatores de Crescimento Transformadores/metabolismo
8.
Antioxidants (Basel) ; 10(11)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34829531

RESUMO

Osteoarthritis (OA) is a destructive disease of the joint with age and obesity being its most important risk factors. Around 50% of OA patients suffer from inflammation of the synovial joint capsule, which is characterized by increased abundance and activation of synovial macrophages that produce reactive oxygen species (ROS) via NADPH-oxidase 2 (NOX2). Both ROS and high blood levels of low-density lipoprotein (LDL) are implicated in OA pathophysiology, which may interact to form oxidized LDL (oxLDL) and thereby promote disease. Therefore, targeting NOX2 could be a viable treatment strategy for OA. Collagenase-induced OA (CiOA) was used to compare pathology between wild-type (WT) and Nox2 knockout (Nox2-/-) C57Bl/6 mice. Mice were either fed a standard diet or Western diet (WD) to study a possible interaction between NOX2-derived ROS and LDL. Synovial inflammation, cartilage damage and ectopic bone size were assessed on histology. Extracellular ROS production by macrophages was measured in vitro using the Amplex Red assay. Nox2-/- macrophages produced basal levels of ROS but were unable to increase ROS production in response to the alarmin S100A8 or the phorbol ester PMA. Interestingly, Nox2 deficiency reduced cartilage damage, synovial lining thickness and ectopic bone size, whereas these disease parameters were not affected by WD-feeding. These results suggest that NOX2-derived ROS are involved in CiOA development.

9.
Arthritis Res Ther ; 23(1): 216, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34412663

RESUMO

BACKGROUND: Excessive osteoclast activity, which is strongly stimulated by pro-inflammatory mediators, results in bone and cartilage degeneration as central features of many arthritides. Levels of the alarmin S100A8/A9 and interleukin (IL)-1ß are both increased in arthritis patients and correlate with disease activity and progression of tissue erosion. We previously presented S100A8/A9 as a good biomarker for joint inflammation and arthritis pathology under circumstances of high IL-1 signaling in mice that lack the gene encoding IL-1 receptor antagonist (Il1rn-/- mice). Here, we investigated whether S100A8/A9 is also actively involved in the development of joint inflammation and both cartilage and bone pathology under these conditions by comparing Il1rn-/- mice with mice that have an additional deficiency for S100a9 (Il1rn-/-XS100a9-/-). METHODS: Il1rn-/-XS100a9-/- on a BALB/c background were obtained by crossing S100a9-/- mice and Il1rn-/- mice. Arthritis incidence and severity were macroscopically scored. Myeloid cell populations in the bone marrow and spleen were determined using flow cytometry. In vitro osteoclastogenesis of bone marrow cells was evaluated with TRAP staining. Microscopic joint inflammation, cartilage degeneration, and bone destruction were evaluated using histology of ankle joints of 12- and 20-week-old mice. RESULTS: Macroscopically scored arthritis severity was comparable between Il1rn-/- and Il1rn-/-XS100a9-/- mice. Inflammation, cartilage erosion, and bone erosion were clearly present in 12-week-old mice of both strains lacking Il1rn-/-, but not significantly different between Il1rn-/-XS100a9-/- and Il1rn-/-. Moreover, we observed that the numbers of neutrophils and monocytes were increased by the absence of Il1rn, which was affected by the absence of S100a9 only in the spleen but not in the bone marrow. In line with our other findings, the absence of S100a9 did not affect the osteoclastogenic potential of osteoclast precursors in the absence of Il1rn. Finally, in agreement with the findings in early arthritis development in 12-week-old mice, cartilage and bone erosion in 20-week-old mice was significantly higher in both Il1rn-/- strains, but the additional absence of S100a9 did not further affect tissue pathology. CONCLUSION: S100A8/A9 deficiency does not significantly affect inflammation and joint destruction in mice with high IL1ß signaling suggesting that S100A8/A9 is not essential for the development of arthritis under these conditions.


Assuntos
Artrite Experimental , Calgranulina A , Calgranulina B , Proteína Antagonista do Receptor de Interleucina 1 , Animais , Artrite Experimental/genética , Calgranulina A/genética , Calgranulina A/metabolismo , Calgranulina B/genética , Calgranulina B/metabolismo , Humanos , Inflamação/genética , Proteína Antagonista do Receptor de Interleucina 1/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout
10.
Rheumatology (Oxford) ; 60(3): 1042-1053, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33410465

RESUMO

OA is a complex and highly prevalent degenerative disease affecting the whole joint, in which factors like genetic predisposition, gender, age, obesity and traumas contribute to joint destruction. ∼50-80% of OA patients develop synovitis. OA-associated risk factors contribute to joint instability and the release of cartilage matrix fragments, activating the synovium to release pro-inflammatory factors and catabolic enzymes in turn damaging the cartilage and creating a vicious circle. Currently, no cure is available for OA. Mesenchymal stromal cells (MSCs) have been tested in OA for their chondrogenic and anti-inflammatory properties. Interestingly, MSCs are most effective when administered during synovitis. This review focusses on the interplay between joint inflammation and the immunomodulation by MSCs in OA. We discuss the potential of MSCs to break the vicious circle of inflammation and describe current perspectives and challenges for clinical application of MSCs in treatment and prevention of OA, focussing on preventing post-traumatic OA.


Assuntos
Imunomodulação , Inflamação/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Osteoartrite/terapia , Sinovite/terapia , Humanos , Inflamação/imunologia , Osteoartrite/imunologia , Sinovite/imunologia
11.
J Immunol Res ; 2020: 9690832, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32964059

RESUMO

OBJECTIVE: To investigate the role of TAM receptors in rheumatoid arthritis (RA) by determining synovial tissue TAM receptor expression, synovial fluid levels of soluble TAM receptors, and the relationship between soluble TAM receptors, joint inflammation and disease activity. METHODS: TAM receptor expression was determined by immunohistochemistry on the synovium from RA and osteoarthritis (OA) patients. Soluble (s) Tyro3, sAxl, sMer, and their ligand Gas6 were measured by ELISA in the synovial fluid of RA (n = 28) and OA (n = 12) patients and cytokine levels by multiplex immunoassay in RA samples. Correlation analyses were performed among sTAM receptors with local cytokine levels; systemic disease parameters like erythrocyte sedimentation rate (ESR), rheumatoid factor (RF), and anticyclic citrullinated peptide antibodies (ACPA); and disease activity scores (DAS28-ESR) in RA patients. RESULTS: TAM receptors were expressed on different locations in the synovial tissue (lining, sublining, and blood vessels), and a similar expression pattern was observed in RA and OA patients. Synovial fluid sTyro3 and sMer were significantly enhanced in RA compared to OA patients, whereas no significant differences in sAxl and Gas6 levels were found. In RA samples, sTyro3 levels, but not sMer, correlated positively with proinflammatory local cytokines and the systemic factor erythrocyte sedimentation rate. Moreover, stratification analysis showed high sTyro3 levels positively correlated with higher DAS28-ESR and in RF and ACPA double positive RA patients. CONCLUSION: sTyro3 in the synovial fluid of RA patients correlates with local inflammatory molecules and systemic disease activity. These findings suggest that the reduced negative control of cell activation by TAM receptors due to their shedding in the synovial fluid, mainly sTyro3, favoring joint inflammation in RA patients.


Assuntos
Artrite Reumatoide/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Líquido Sinovial/metabolismo , Adulto , Idoso , Artrite Reumatoide/diagnóstico , Artrite Reumatoide/etiologia , Biomarcadores , Citocinas/metabolismo , Suscetibilidade a Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Expressão Gênica , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Membrana Sinovial/metabolismo
12.
PLoS One ; 15(7): e0236508, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32726333

RESUMO

Extracellular vesicles (EVs) are cell membrane-derived phospholipid bilayer nanostructures that contain bioactive proteins, enzymes, lipids and polymers of nucleotides. They play a role in intercellular communication and are present in body fluids. EVs can be isolated by methods like ultracentrifugation (UC), polyethylene-glycol-precipitation (PEG) or size exclusion chromatography (SEC). The co-presence of immunoglobulins (Ig) in EV samples isolated from plasma (pEVs) is often reported and this may influence the assessment of the biological function and phenotype of EVs in bio- and immunoassay. Here, we studied the presence of an Ig-based therapeutic (etanercept) in pEV samples isolated from rheumatoid arthritis (RA) patients and improved the isolation method to obtain purer pEVs. From plasma of etanercept (Tumor-necrosis-factor (TNF)-α antibodies)-treated RA patients pEVs were isolated by either UC, PEG or SEC. SEC isolated pEVs showed the highest particle-to-protein ratio. Strong TNF-α inhibition determined in a TNF-α sensitive reporter assay was observed by pEVs isolated by UC and PEG, and to a lesser extent by SEC, suggesting the presence of functional etanercept. SEC isolation of etanercept or labelled immunoglobulin G (IgG) showed co-isolation of these antibodies in the pEV fraction in the presence of plasma or a high protein (albumin) concentration. To minimize the presence of etanercept or immunoglobulins, we extended SEC (eSEC) column length from 56mm to 222mm (total stacking volume unchanged). No effect on the amount of isolated pEVs was observed while protein and IgG content were markedly reduced (90%). Next, from six etanercept- treated RA patients, pEVs were isolated on a eSEC or standard SEC column, in parallel. TNF-α inhibition was again observed in pEVs isolated by conventional SEC but not by eSEC. To confirm the purer pEVs isolated by eSEC the basal IL-8 promoter activation in human monocytes was determined and in 4 out of 5 SEC isolated pEVs activation was observed while eSEC isolated pEVs did not. This study shows that extended SEC columns yielded pEVs without detectable biologicals and with low protein and IgG levels. This isolation method will improve the characterization of pEVs as potential biomarkers and mediators of disease.


Assuntos
Produtos Biológicos/sangue , Proteínas Sanguíneas/análise , Vesículas Extracelulares/metabolismo , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/patologia , Cromatografia em Gel , Etanercepte/sangue , Etanercepte/uso terapêutico , Vesículas Extracelulares/química , Humanos , Imunoglobulina G/análise , Interleucina-8/genética , Regiões Promotoras Genéticas , Ativação Transcricional , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo
13.
Int J Mol Sci ; 21(11)2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32471111

RESUMO

Recently, it was shown that interleukin-1ß (IL-1ß) has diverse stimulatory effects on different murine long bone marrow osteoclast precursors (OCPs) in vitro. In this study, interleukin-1 receptor antagonist deficient (Il1rn-/-) and wild-type (WT) mice were compared to investigate the effects of enhanced IL-1 signaling on the composition of OCPs in long bone, calvaria, vertebra, and jaw. Bone marrow cells were isolated from these sites and the percentage of early blast (CD31hi Ly-6C-), myeloid blast (CD31+ Ly-6C+), and monocyte (CD31- Ly-6Chi) OCPs was assessed by flow cytometry. At the time-point of cell isolation, Il1rn-/- mice showed no inflammation or bone destruction yet as determined by histology and microcomputed tomography. However, Il1rn-/- mice had an approximately two-fold higher percentage of OCPs in long bone and jaw marrow compared to WT. Conversely, vertebrae and calvaria marrow contained a similar composition of OCPs in both strains. Bone marrow cells were cultured with macrophage colony stimulating factor (M-CSF) and receptor of NfκB ligand (RANKL) on bone slices to assess osteoclastogenesis and on calcium phosphate-coated plates to analyze mineral dissolution. Deletion of Il1rn increased osteoclastogenesis from long bone, calvaria, and jaw marrows, and all Il1rn-/- cultures showed increased mineral dissolution compared to WT. However, osteoclast markers increased exclusively in Il1rn-/- osteoclasts from long bone and jaw. Collectively, these findings indicate that a lack of IL-1RA increases the numbers of OCPs in vivo, particularly in long bone and jaw, where rheumatoid arthritis and periodontitis develop. Thus, increased bone loss at these sites may be triggered by a larger pool of OCPs due to the disruption of IL-1 inhibitors.


Assuntos
Células da Medula Óssea/citologia , Medula Óssea/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/deficiência , Arcada Osseodentária/citologia , Osteoclastos/citologia , Animais , Biomarcadores/metabolismo , Fosfatos de Cálcio/metabolismo , Contagem de Células , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Arcada Osseodentária/diagnóstico por imagem , Camundongos Endogâmicos BALB C , Minerais/metabolismo , Monócitos/citologia , Crânio/citologia , Microtomografia por Raio-X
14.
J Neurointerv Surg ; 12(11): 1117-1121, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32332055

RESUMO

BACKGROUND: Inflammation-related factors might give further insight into the pathophysiology of vessel wall inflammation and intracranial aneurysm (IA) rupture. One of these factors is the protein complex S100A8/A9, which is released by neutrophils, monocytes, and activated macrophages and is known for its role in cardiovascular disease. OBJECTIVE: To determine if venous S100A8/A9 levels in patients with a ruptured IA (rIA) or unruptured IA (uIA) are elevated compared with a control group. Second, to assess differences between venous and intra-aneurysmal S100A8/A9 levels of rIA and uIA patients. METHODS: A prospective case study was performed between June 2016 and May 2017 in patients harboring a ruptured or unruptured saccular IA. Primary outcome measures were individual S100A8/A9 serum concentrations as measured in venous and intra-aneurysmal blood samples during endovascular treatment. Venous serum S100A8/A9 concentrations from a healthy control group served as a reference. RESULTS: We included 16 patients with either a rIA or uIA and 47 healthy controls. Venous S100A8/A9 concentrations were higher in aneurysm patients (rIA and uIA) than those of healthy controls (P≤0.001). S100A8/A9 concentrations were higher in intra-aneurysmal samples than in venous samples of rIA patients (P=0.011). This difference was not found in uIA patients (P=0.054). Intra-aneurysmal S100A8/A9 levels were higher in rIAs than in uIAs (P=0.04). CONCLUSIONS: Venous S100A8/A9 levels are elevated in patients with both rIAs and uIAs compared with healthy controls and likely represents aneurysm wall inflammation. S100A8/A9 causes macrophage-induced inflammation and degeneration of the vessel wall which might explain higher intra-aneurysmal S100A8/A9 levels found in rIAs than in uIAs.


Assuntos
Aneurisma Roto/sangue , Calgranulina A/sangue , Calgranulina B/sangue , Mediadores da Inflamação/sangue , Aneurisma Intracraniano/sangue , Adulto , Idoso , Aneurisma Roto/diagnóstico , Biomarcadores/sangue , Estudos de Coortes , Feminino , Humanos , Aneurisma Intracraniano/diagnóstico , Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , Neutrófilos/metabolismo , Estudos Prospectivos , Adulto Jovem
15.
Front Immunol ; 10: 1901, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31440259

RESUMO

Extracellular vesicles are a heterogeneous group of cell-derived membranous structures, which facilitate intercellular communication. Recent studies have highlighted the importance of extracellular vesicles in bone homeostasis, as mediators of crosstalk between different bone-resident cells. Osteoblasts and osteoclasts are capable of releasing various types of extracellular vesicles that promote both osteogenesis, as well as, osteoclastogenesis, maintaining bone homeostasis. However, the contribution of immune cell-derived extracellular vesicles in bone homeostasis remains largely unknown. Recent proteomic studies showed that alarmins are abundantly present in/on macrophage-derived EVs. In this review we will describe these alarmins in the context of bone matrix regulation and discuss the potential contribution macrophage-derived EVs may have in this process.


Assuntos
Alarminas/metabolismo , Osso e Ossos/metabolismo , Osso e Ossos/fisiologia , Vesículas Extracelulares/metabolismo , Homeostase/fisiologia , Macrófagos/metabolismo , Animais , Comunicação Celular/fisiologia , Vesículas Extracelulares/fisiologia , Humanos , Macrófagos/fisiologia , Osteoblastos/metabolismo , Osteoblastos/fisiologia , Osteoclastos/metabolismo , Osteoclastos/fisiologia , Osteogênese/fisiologia
16.
PLoS One ; 14(7): e0219366, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31283798

RESUMO

The intestinal microbiome is perturbed in patients with new-onset and chronic autoimmune inflammatory arthritis. Recent studies in mouse models suggest that development and progression of autoimmune arthritis is highly affected by the intestinal microbiome. This makes modulation of the intestinal microbiota an interesting novel approach to suppress inflammatory arthritis. Prebiotics, defined as non-digestible carbohydrates that selectively stimulate the growth and activity of beneficial microorganisms, provide a relatively non-invasive approach to modulate the intestinal microbiota. The aim of this study was to assess the therapeutic potential of dietary supplementation with a prebiotic mixture of 90% short-chain galacto-oligosaccharides and 10% long-chain fructo-oligosaccharides (scGOS/lcFOS) in experimental arthritis in mice. We here show that dietary supplementation with scGOS/lcFOS has a pronounced effect on the composition of the fecal microbiota. Interestingly, the genera Enterococcus and Clostridium were markedly decreased by scGOS/lcFOS dietary supplementation. In contrast, the family Lachnospiraceae and the genus Lactobacillus, both associated with healthy microbiota, increased in mice receiving scGOS/lcFOS diet. However, the scGOS/lcFOS induced alterations of the intestinal microbiota did not induce significant effects on the intestinal and systemic T helper cell subsets and were not sufficient to reproducibly suppress arthritis in mice. As expected, we did observe a significant increase in the bone mineral density in mice upon dietary supplementation with scGOS/lcFOS for 8 weeks. Altogether, this study suggests that dietary scGOS/lcFOS supplementation is able to promote presumably healthy gut microbiota and improve bone mineral density, but not inflammation, in arthritis-prone mice.


Assuntos
Artrite Experimental/patologia , Microbioma Gastrointestinal/efeitos dos fármacos , Proteína Antagonista do Receptor de Interleucina 1/genética , Oligossacarídeos/farmacologia , Animais , Densidade Óssea/efeitos dos fármacos , Suplementos Nutricionais , Fezes/microbiologia , Feminino , Proteína Antagonista do Receptor de Interleucina 1/deficiência , Lactobacillus/genética , Lactobacillus/isolamento & purificação , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Prebióticos , Receptores de Interleucina-1 , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/metabolismo
17.
Front Immunol ; 10: 1075, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191517

RESUMO

Background: Injection of adipose-derived mesenchymal stromal cells (ASCs) into murine knee joints after induction of inflammatory collagenase-induced osteoarthritis (CiOA) reduces development of joint pathology. This protection is only achieved when ASCs are applied in early CiOA, which is characterized by synovitis and high S100A8/A9 and IL-1ß levels, suggesting that inflammation is a prerequisite for the protective effect of ASCs. Our objective was to gain more insight into the interplay between synovitis and ASC-mediated amelioration of CiOA pathology. Methods: CiOA was induced by intra-articular collagenase injection. Knee joint sections were stained with hematoxylin/eosin and immunolocalization of polymorphonuclear cells (PMNs) and ASCs was performed using antibodies for NIMP-R14 and CD271, respectively. Chemokine expression induced by IL-1ß or S100A8/A9 was assessed with qPCR and Luminex. ASC-PMN co-cultures were analyzed microscopically and with Luminex for inflammatory mediators. Migration of PMNs through transwell membranes toward conditioned medium of non-stimulated ASCs (ASCNS-CM) or IL-1ß-stimulated ASCs (ASCIL-1ß-CM) was examined using flow cytometry. Phagocytic capacity of PMNs was measured with labeled zymosan particles. Results: Intra-articular saline injection on day 7 of CiOA increased synovitis after 6 h, characterized by PMNs scattered throughout the joint cavity and the synovium. ASC injection resulted in comparable numbers of PMNs which clustered around ASCs in close interaction with the synovial lining. IL-1ß-stimulation of ASCs in vitro strongly increased expression of PMN-attracting chemokines CXCL5, CXCL7, and KC, whereas S100A8/A9-stimulation did not. In agreement, the number of clustered PMNs per ASC was significantly increased after 6 h of co-culturing with IL-1ß-stimulated ASCs. Also migration of PMNs toward ASCIL-1ß-CM was significantly enhanced (287%) when compared to ASCNS-CM. Interestingly, association of PMNs with ASCs significantly diminished KC protein release by ASCs (69% lower after 24 h), accompanied by reduced release of S100A8/A9 protein by the PMNs. Moreover, phagocytic capacity of PMNs was strongly enhanced after priming with ASCIL-1ß-CM. Conclusions: Local application of ASCs in inflamed CiOA knee joints results in clustering of attracted PMNs with ASCs in the synovium, which is likely mediated by IL-1ß-induced up-regulation of chemokine release by ASCs. This results in enhanced phagocytic capacity of PMNs, enabling the clearance of debris to attenuate synovitis.


Assuntos
Interleucina-1beta/fisiologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/fisiologia , Neutrófilos/fisiologia , Osteoartrite do Joelho/terapia , Fagocitose , Animais , Artrite Experimental/terapia , Células Cultivadas , Quimiocinas/fisiologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia
18.
Rheumatology (Oxford) ; 58(8): 1331-1343, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31180451

RESUMO

Bone erosion is one of the central hallmarks of RA and is caused by excessive differentiation and activation of osteoclasts. Presence of autoantibodies in seropositive arthritis is associated with radiographic disease progression. ICs, formed by autoantibodies and their antigens, activate Fcγ-receptor signalling in immune cells, and as such stimulate inflammation-mediated bone erosion. Interestingly, ICs can also directly activate osteoclasts by binding to FcγRs on their surface. Next to autoantibodies, high levels of alarmins, among which is S100A8/A9, are typical for RA and they can further activate the immune system but also directly promote osteoclast function. Therefore, IC-activated FcγRs and S100A8/A9 might act as partners in crime to stimulate inflammation and osteoclasts differentiation and function, thereby stimulating bone erosion. This review discusses the separate roles of ICs, FcγRs and alarmins in bone erosion and sheds new light on the possible interplay between them, which could fuel bone erosion.


Assuntos
Artrite Reumatoide/metabolismo , Reabsorção Óssea/metabolismo , Calgranulina A/metabolismo , Calgranulina B/metabolismo , Receptores de IgG/metabolismo , Animais , Complexo Antígeno-Anticorpo/metabolismo , Artrite Reumatoide/complicações , Artrite Reumatoide/imunologia , Autoanticorpos/metabolismo , Reabsorção Óssea/etiologia , Reabsorção Óssea/imunologia , Diferenciação Celular , Humanos , Osteoclastos/metabolismo
19.
Clin Exp Rheumatol ; 37(6): 983-993, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31074720

RESUMO

OBJECTIVES: In this study, we used hypercholesterolaemic apolipoprotein E-deficient (Apoe-/-) mice to investigate LDL/oxLDL effect on synovial inflammation and cartilage destruction during antigen-induced arthritis (AIA). Further, as macrophage FcγRs are crucial to immune complex-mediated AIA, we investigated in vitro the effects of high cholesterol levels on the expression of FcγRs on macrophages. METHODS: AIA was induced by intra-articular injection of mBSA into knee joints of immunised Apoe-/- and wild type (WT) control mice. Joint swelling was measured by uptake of 99mTc pertechnetate (99mTc). Joint inflammation and cartilage destruction were assessed by histology. Anti-mBSA IgGs were measured by ELISA and specific T-cell response by lymphocyte stimulation test. Upon oxLDL stimulation of WT macrophages, protein levels of FcγRs were measured by flow cytometry. RESULTS: Local induction of AIA resulted in less joint swelling, synovial infiltrate and exudate in the joint cavity in Apoe-/- mice compared to WT controls, even though both their humoral and adaptive immune response were comparable. Whereas Apoe deficiency alone did not affect macrophage expression of FcγRs, oxLDL sharply reduced the protein levels of activating FcγRs, crucial in mediating cartilage damage. In agreement with the reduced inflammation in Apoe-/- mice, we observed decreased MMP activity and destruction in the articular cartilage. CONCLUSIONS: Taken together, our findings suggest that high levels of LDL/oxLDL during inflammation, dampen the initiation and chronicity of joint inflammation and cartilage destruction in AIA by regulating macrophage FcγR expression.


Assuntos
Artrite Experimental , Cartilagem Articular , LDL-Colesterol/sangue , Animais , Artrite Experimental/imunologia , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Modelos Animais de Doenças , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de IgG
20.
Rheumatology (Oxford) ; 58(6): 1065-1074, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30649473

RESUMO

OBJECTIVES: Previously, we have shown the involvement of Wnt-activated protein Wnt-1-induced signaling protein 1 (WISP1) in the development of OA in mice. Here, we aimed to characterize the relation between WISP1 expression and human OA and its regulatory epigenetic determinants. METHODS: Preserved and lesioned articular cartilage from end-stage OA patients and non-OA-diagnosed individuals was collected. WISP1 expression was determined using immunohistochemistry and damage was classified using Mankin scoring. RNA expression and DNA methylation were assessed in silico from genome-wide datasets (microarray analysis and RNA sequencing, and 450 k-methylationarrays, respectively). Effects of WISP1 were tested in pellet cultures of primary human chondrocytes. RESULTS: WISP1 expression in cartilage of OA patients was increased compared with non-OA-diagnosed controls and, within OA patients, WISP1 was even higher in lesioned compared with preserved regions, with expression strongly correlating with Mankin score. In early symptomatic OA patients with disease progression, higher synovial WISP1 expression was observed as compared with non-progressors. Notably, increased WISP1 expression was inversely correlated with methylation levels of a positional CpG-dinucleotide (cg10191240), with lesioned areas showing strong hypomethylation for this CpG as compared with preserved cartilage. Additionally, we observed that methylation levels were allele-dependent for an intronic single-nucleotide polymorphism nearby cg10191240. Finally, addition of recombinant WISP1 to pellets of primary chondrocytes strongly inhibited deposition of extracellular matrix as reflected by decreased pellet circumference, proteoglycan content and decreased expression of matrix components. CONCLUSION: Increased WISP1 expression is found in lesioned human articular cartilage, and appears epigenetically regulated via DNA methylation. In vitro assays suggest that increased WISP1 is detrimental for cartilage integrity.


Assuntos
Proteínas de Sinalização Intercelular CCN/metabolismo , Cartilagem Articular/metabolismo , Osteoartrite do Joelho/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Condrócitos/metabolismo , Metilação de DNA , Epigênese Genética , Humanos , Articulação do Joelho/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...