Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5388, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918376

RESUMO

Heparan sulfate (HS) is degraded in lysosome by a series of glycosidases. Before the glycosidases can act, the terminal glucosamine of HS must be acetylated by the integral lysosomal membrane enzyme heparan-α-glucosaminide N-acetyltransferase (HGSNAT). Mutations of HGSNAT cause HS accumulation and consequently mucopolysaccharidosis IIIC, a devastating lysosomal storage disease characterized by progressive neurological deterioration and early death where no treatment is available. HGSNAT catalyzes a unique transmembrane acetylation reaction where the acetyl group of cytosolic acetyl-CoA is transported across the lysosomal membrane and attached to HS in one reaction. However, the reaction mechanism remains elusive. Here we report six cryo-EM structures of HGSNAT along the reaction pathway. These structures reveal a dimer arrangement and a unique structural fold, which enables the elucidation of the reaction mechanism. We find that a central pore within each monomer traverses the membrane and controls access of cytosolic acetyl-CoA to the active site at its luminal mouth where glucosamine binds. A histidine-aspartic acid catalytic dyad catalyzes the transfer reaction via a ternary complex mechanism. Furthermore, the structures allow the mapping of disease-causing variants and reveal their potential impact on the function, thus creating a framework to guide structure-based drug discovery efforts.


Assuntos
Acetiltransferases , Microscopia Crioeletrônica , Lisossomos , Mucopolissacaridose III , Mucopolissacaridose III/genética , Mucopolissacaridose III/metabolismo , Mucopolissacaridose III/enzimologia , Humanos , Lisossomos/metabolismo , Lisossomos/enzimologia , Acetiltransferases/metabolismo , Acetiltransferases/química , Acetiltransferases/genética , Domínio Catalítico , Mutação , Heparitina Sulfato/metabolismo , Acetilcoenzima A/metabolismo , Acetilcoenzima A/química , Modelos Moleculares , Glucosamina/metabolismo , Glucosamina/química , Acetilação , Membranas Intracelulares/metabolismo
3.
J Transl Med ; 19(1): 517, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930320

RESUMO

BACKGROUND: Over the past decade, human Interleukin 33 (hIL-33) has emerged as a key contributor to the pathogenesis of numerous inflammatory diseases. Despite the existence of several commercial hIL-33 assays spanning multiple platform technologies, their ability to provide accurate hIL-33 concentration measurements and to differentiate between active (reduced) and inactive (oxidized) hIL-33 in various matrices remains uncertain. This is especially true for lower sample volumes, matrices with low hIL-33 concentrations, and matrices with elevated levels of soluble Interleukin 1 Receptor-Like 1 (sST2), an inactive form of ST2 that competes with membrane bound ST2 for hIL-33 binding. RESULTS: We tested the performance of several commercially available hIL-33 detection assays in various human matrices and found that most of these assays lacked the sensitivity to accurately detect reduced hIL-33 at biologically relevant levels (sub-to-low pg/mL), especially in the presence of human sST2 (hsST2), and/or lacked sufficient target specificity. To address this, we developed and validated a sensitive and specific enzyme-linked immunosorbent assay (ELISA) capable of detecting reduced and total hIL-33 levels even in the presence of high concentrations of sST2. By incorporating the immuno-polymerase chain reaction (iPCR) platform, we further increased the sensitivity of this assay for the reduced form of hIL-33 by ~ 52-fold. Using this hIL-33 iPCR assay, we detected hIL-33 in postmortem human vitreous humor (VH) samples from donors with age-related macular degeneration (AMD) and found significantly increased hIL-33 levels when compared to control individuals. No statistically significant difference was observed in aqueous humor (AH) from AMD donors nor in plasma and nasosorption fluid (NF) from asthma patients compared to control individuals. CONCLUSIONS: Unlike existing commercial hIL-33 assays, our hIL-33 bioassays are highly sensitive and specific and can accurately quantify hIL-33 in various human clinical matrices, including those with high levels of hsST2. Our results provide a proof of concept of the utility of these assays in clinical trials targeting the hIL-33/hST2 pathway.


Assuntos
Asma , Degeneração Macular , Bioensaio , Biomarcadores , Desenvolvimento de Medicamentos , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Interleucina-33 , Sensibilidade e Especificidade
4.
Sci Immunol ; 6(59)2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33963061

RESUMO

Repair of the intestinal epithelium is tightly regulated to maintain homeostasis. The response after epithelial damage needs to be local and proportional to the insult. How different types of damage are coupled to repair remains incompletely understood. We report that after distinct types of intestinal epithelial damage, IL-1R1 signaling in GREM1+ mesenchymal cells increases production of R-spondin 3 (RSPO3), a Wnt agonist required for intestinal stem cell self-renewal. In parallel, IL-1R1 signaling regulates IL-22 production by innate lymphoid cells and promotes epithelial hyperplasia and regeneration. Although the regulation of both RSPO3 and IL-22 is critical for epithelial recovery from Citrobacter rodentium infection, IL-1R1-dependent RSPO3 production by GREM1+ mesenchymal cells alone is sufficient and required for recovery after dextran sulfate sodium-induced colitis. These data demonstrate how IL-1R1-dependent signaling orchestrates distinct repair programs tailored to the type of injury sustained that are required to restore intestinal epithelial barrier function.


Assuntos
Citrobacter rodentium , Infecções por Enterobacteriaceae/imunologia , Mucosa Intestinal/fisiologia , Receptores Tipo I de Interleucina-1/imunologia , Animais , Células Cultivadas , Técnicas de Cocultura , Colite/induzido quimicamente , Colite/imunologia , Colite/patologia , Colo/efeitos dos fármacos , Colo/imunologia , Colo/patologia , Sulfato de Dextrana , Células Epiteliais , Fibroblastos , Interleucinas/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Camundongos Transgênicos , Organoides , Receptores Tipo I de Interleucina-1/genética , Regeneração , Transdução de Sinais , Trombospondinas/imunologia , Interleucina 22
5.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33446504

RESUMO

Triggering receptor expressed on myeloid cells 2 (TREM2) sustains microglia response to brain injury stimuli including apoptotic cells, myelin damage, and amyloid ß (Aß). Alzheimer's disease (AD) risk is associated with the TREM2R47H variant, which impairs ligand binding and consequently microglia responses to Aß pathology. Here, we show that TREM2 engagement by the mAb hT2AB as surrogate ligand activates microglia in 5XFAD transgenic mice that accumulate Aß and express either the common TREM2 variant (TREM2CV) or TREM2R47H scRNA-seq of microglia from TREM2CV-5XFAD mice treated once with control hIgG1 exposed four distinct trajectories of microglia activation leading to disease-associated (DAM), interferon-responsive (IFN-R), cycling (Cyc-M), and MHC-II expressing (MHC-II) microglia types. All of these were underrepresented in TREM2R47H-5XFAD mice, suggesting that TREM2 ligand engagement is required for microglia activation trajectories. Moreover, Cyc-M and IFN-R microglia were more abundant in female than male TREM2CV-5XFAD mice, likely due to greater Aß load in female 5XFAD mice. A single systemic injection of hT2AB replenished Cyc-M, IFN-R, and MHC-II pools in TREM2R47H-5XFAD mice. In TREM2CV-5XFAD mice, however, hT2AB brought the representation of male Cyc-M and IFN-R microglia closer to that of females, in which these trajectories had already reached maximum capacity. Moreover, hT2AB induced shifts in gene expression patterns in all microglial pools without affecting representation. Repeated treatment with a murinized hT2AB version over 10 d increased chemokines brain content in TREM2R47H-5XFAD mice, consistent with microglia expansion. Thus, the impact of hT2AB on microglia is shaped by the extent of TREM2 endogenous ligand engagement and basal microglia activation.


Assuntos
Doença de Alzheimer/genética , Encéfalo/metabolismo , Glicoproteínas de Membrana/genética , Microglia/metabolismo , Receptores Imunológicos/genética , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Proliferação de Células , Quimiocinas/genética , Quimiocinas/metabolismo , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Células HEK293 , Humanos , Cinética , Masculino , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Microglia/classificação , Microglia/efeitos dos fármacos , Microglia/patologia , Mutação , Ligação Proteica , Receptores Imunológicos/antagonistas & inibidores , Receptores Imunológicos/metabolismo , Fatores Sexuais
6.
Commun Biol ; 3(1): 687, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33214666

RESUMO

Vascular leakage, or edema, is a serious complication of acute allergic reactions. Vascular leakage is triggered by the release of histamine and serotonin from granules within tissue-resident mast cells. Here, we show that expression of Neutrophil Serine Protease 4 (NSP4) during the early stages of mast cell development regulates mast cell-mediated vascular leakage. In myeloid precursors, the granulocyte-macrophage progenitors (GMPs), loss of NSP4 results in the decrease of cellular levels of histamine, serotonin and heparin/heparan sulfate. Mast cells that are derived from NSP4-deficient GMPs have abnormal secretory granule morphology and a sustained reduction in histamine and serotonin levels. Consequently, in passive cutaneous anaphylaxis and acute arthritis models, mast cell-mediated vascular leakage in the skin and joints is substantially reduced in NSP4-deficient mice. Our findings reveal that NSP4 is required for the proper storage of vasoactive amines in mast cell granules, which impacts mast cell-dependent vascular leakage in mouse models of immune complex-mediated diseases.


Assuntos
Mastócitos/enzimologia , Serina Proteases/metabolismo , Transferência Adotiva , Animais , Complexo Antígeno-Anticorpo , Regulação Enzimológica da Expressão Gênica , Histamina/metabolismo , Camundongos , Camundongos Knockout , Neutrófilos , Serina Proteases/genética , Serotonina/metabolismo
7.
Proc Natl Acad Sci U S A ; 117(18): 9952-9963, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32345717

RESUMO

Genetic polymorphisms in the region of the trimeric serine hydrolase high-temperature requirement 1 (HTRA1) are associated with increased risk of age-related macular degeneration (AMD) and disease progression, but the precise biological function of HtrA1 in the eye and its contribution to disease etiologies remain undefined. In this study, we have developed an HtrA1-blocking Fab fragment to test the therapeutic hypothesis that HtrA1 protease activity is involved in the progression of AMD. Next, we generated an activity-based small-molecule probe (ABP) to track target engagement in vivo. In addition, we used N-terminomic proteomic profiling in preclinical models to elucidate the in vivo repertoire of HtrA1-specific substrates, and identified substrates that can serve as robust pharmacodynamic biomarkers of HtrA1 activity. One of these HtrA1 substrates, Dickkopf-related protein 3 (DKK3), was successfully used as a biomarker to demonstrate the inhibition of HtrA1 activity in patients with AMD who were treated with the HtrA1-blocking Fab fragment. This pharmacodynamic biomarker provides important information on HtrA1 activity and pharmacological inhibition within the ocular compartment.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Anticorpos Anti-Idiotípicos/farmacologia , Atrofia Geográfica/tratamento farmacológico , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Degeneração Macular/tratamento farmacológico , Proteínas Adaptadoras de Transdução de Sinal/isolamento & purificação , Idoso , Animais , Anticorpos Anti-Idiotípicos/genética , Anticorpos Anti-Idiotípicos/imunologia , Biomarcadores/sangue , Progressão da Doença , Feminino , Predisposição Genética para Doença , Genótipo , Atrofia Geográfica/sangue , Atrofia Geográfica/genética , Atrofia Geográfica/imunologia , Serina Peptidase 1 de Requerimento de Alta Temperatura A/antagonistas & inibidores , Humanos , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/farmacologia , Degeneração Macular/sangue , Degeneração Macular/genética , Degeneração Macular/imunologia , Masculino , Polimorfismo de Nucleotídeo Único/genética , Proteoma/genética , Proteoma/imunologia , Ratos , Retina/efeitos dos fármacos , Retina/imunologia , Retina/patologia , Bibliotecas de Moléculas Pequenas/farmacologia
8.
Cell Rep ; 30(4): 1246-1259.e6, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31995762

RESUMO

Age-related macular degeneration (AMD) is a leading cause of vision loss. To better understand disease pathogenesis and identify causal genes in GWAS loci for AMD risk, we present a comprehensive database of human retina and retinal pigment epithelium (RPE). Our database comprises macular and non-macular RNA sequencing (RNA-seq) profiles from 129 donors, a genome-wide expression quantitative trait loci (eQTL) dataset that includes macula-specific retina and RPE/choroid, and single-nucleus RNA-seq (NucSeq) from human retina and RPE with subtype resolution from more than 100,000 cells. Using NucSeq, we find enriched expression of AMD candidate genes in RPE cells. We identify 15 putative causal genes for AMD on the basis of co-localization of genetic association signals for AMD risk and eye eQTL, including the genes TSPAN10 and TRPM1. These results demonstrate the value of our human eye database for elucidating genetic pathways and potential therapeutic targets for ocular diseases.


Assuntos
Suscetibilidade a Doenças/metabolismo , Regulação da Expressão Gênica/genética , Degeneração Macular/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Idoso , Idoso de 80 Anos ou mais , Alelos , Corioide/metabolismo , Bases de Dados Genéticas , Feminino , Estudo de Associação Genômica Ampla , Humanos , Degeneração Macular/genética , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , RNA-Seq , Fatores de Risco , Análise de Célula Única , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Tetraspaninas/genética , Tetraspaninas/metabolismo , Transcriptoma/genética
9.
Cell Death Differ ; 27(1): 161-175, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31101885

RESUMO

The kinase RIP1 acts in multiple signaling pathways to regulate inflammatory responses and it can trigger both apoptosis and necroptosis. Its kinase activity has been implicated in a range of inflammatory, neurodegenerative, and oncogenic diseases. Here, we explore the effect of inhibiting RIP1 genetically, using knock-in mice that express catalytically inactive RIP1 D138N, or pharmacologically, using the murine-potent inhibitor GNE684. Inhibition of RIP1 reduced collagen antibody-induced arthritis, and prevented skin inflammation caused by mutation of Sharpin, or colitis caused by deletion of Nemo from intestinal epithelial cells. Conversely, inhibition of RIP1 had no effect on tumor growth or survival in pancreatic tumor models driven by mutant Kras, nor did it reduce lung metastases in a B16 melanoma model. Collectively, our data emphasize a role for the kinase activity of RIP1 in certain inflammatory disease models, but question its relevance to tumor progression and metastases.


Assuntos
Inflamação/enzimologia , Neoplasias/enzimologia , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Animais , Artrite/enzimologia , Morte Celular , Linhagem Celular , Linhagem Celular Tumoral , Colite/etiologia , Colite/prevenção & controle , Dermatite/enzimologia , Feminino , Técnicas de Introdução de Genes , Humanos , Ileíte/etiologia , Ileíte/prevenção & controle , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Melanoma Experimental/patologia , Camundongos , Metástase Neoplásica , Neoplasias Pancreáticas/patologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Ratos , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/fisiologia
10.
Elife ; 82019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31287416

RESUMO

RIPK1, RIPK3, ZBP1 and TRIF, the four mammalian proteins harboring RIP homotypic interaction motif (RHIM) domains, are key components of inflammatory signaling and programmed cell death. RHIM-domain protein activation is mediated by their oligomerization; however, mechanisms that promote a return to homeostasis remain unknown. Here we show that autophagy is critical for the turnover of all RHIM-domain proteins. Macrophages lacking the autophagy gene Atg16l1accumulated highly insoluble forms of RIPK1, RIPK3, TRIF and ZBP1. Defective autophagy enhanced necroptosis by Tumor necrosis factor (TNF) and Toll-like receptor (TLR) ligands. TNF-mediated necroptosis was mediated by RIPK1 kinase activity, whereas TLR3- or TLR4-mediated death was dependent on TRIF and RIPK3. Unexpectedly, combined deletion of Atg16l1 and Zbp1 accelerated LPS-mediated necroptosis and sepsis in mice. Thus, ZBP1 drives necroptosis in the absence of the RIPK1-RHIM, but suppresses this process when multiple RHIM-domain containing proteins accumulate. These findings identify autophagy as a central regulator of innate inflammation governed by RHIM-domain proteins.


Assuntos
Apoptose , Autofagia , Inflamação/patologia , Mapas de Interação de Proteínas , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Células Cultivadas , Camundongos , Ligação Proteica , Multimerização Proteica , Proteínas de Ligação a RNA/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
11.
Biochimie ; 166: 19-26, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30946946

RESUMO

The recently discovered neutrophil serine protease 4 (NSP4) is the fourth member of the NSP family, which includes the well-studied neutrophil elastase, proteinase 3 and cathepsin G. Like the other three NSP members, NSP4 is synthesized by myeloid precursors in the bone marrow and, after cleavage of the two-amino acid activation peptide, is stored as an active protease in azurophil granules of neutrophils. Based on its primary amino acid sequence, NSP4 is predicted to have a shallow S1 specificity pocket with elastase-like substrate specificity. However, NSP4 was found to preferentially cleave after an arginine residue. Structural studies resolved this paradox by revealing an unprecedented mechanism of P1-arginine recognition. In contrast to the canonical mechanism in which the P1-arginine residue points down into a deep S1 pocket, the arginine side chain adopts a surface-exposed 'up' conformation in the NSP4 active site. This conformation is stabilized by the Phe190 residue, which serves as a hydrophobic platform for the aliphatic portion of the arginine side chain, and a network of hydrogen bonds between the arginine guanidium group and the NSP4 residues Ser192 and Ser216. This unique configuration allows NSP4 to cleave even after naturally modified arginine residues, such as citrulline and methylarginine. This non-canonical mechanism, characterized by the hallmark 'triad' Phe190-Ser192-Ser216, is largely preserved throughout evolution starting with bony fish, which appeared about 400 million years ago. Although the substrates and physiological role of NSP4 remain to be determined, its remarkable evolutionary conservation, restricted tissue expression and homology to other neutrophil serine proteases anticipate a function in immune-related processes.


Assuntos
Arginina/química , Neutrófilos/enzimologia , Proteólise , Serina Endopeptidases/química , Animais , Domínio Catalítico , Humanos , Cinética , Camundongos , Especificidade por Substrato
13.
Sci Rep ; 8(1): 13055, 2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-30143651

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

14.
J Am Soc Nephrol ; 29(8): 2053-2059, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29895552

RESUMO

Background C3 glomerulopathy (C3G) is a life-threatening kidney disease caused by dysregulation of the alternative pathway of complement (AP) activation. No approved specific therapy is available for C3G, although an anti-C5 mAb has been used off-label in some patients with C3G, with mixed results. Thus, there is an unmet medical need to develop other inhibitors of complement for C3G.Methods We used a murine model of lethal C3G to test the potential efficacy of an Fc fusion protein of complement receptor of the Ig superfamily (CRIg-Fc) in the treatment of C3G. CRIg-Fc binds C3b and inhibits C3 and C5 convertases of the AP. Mice with mutations in the factor H and properdin genes (FHm/mP-/-) develop early-onset C3G, with AP consumption, high proteinuria, and lethal crescentic GN.Results Treatment of FHm/mP-/- mice with CRIg-Fc, but not a control IgG, inhibited AP activation and diminished the consumption of plasma C3, factor B, and C5. CRIg-Fc-treated FHm/mP-/- mice also had significantly improved survival and reduced proteinuria, hematuria, BUN, glomerular C3 fragment, C9 and fibrin deposition, and GN pathology scores.Conclusions Therapeutics developed on the basis of the mechanism of action of soluble CRIg may be effective for the treatment of C3G and should be explored clinically.


Assuntos
Complemento C3/antagonistas & inibidores , Complemento C3/genética , Glomerulonefrite por IGA/genética , Glomerulonefrite por IGA/prevenção & controle , Fator 2 de Liberação do Nucleotídeo Guanina/genética , Receptores de Complemento/genética , Análise de Variância , Animais , Biópsia por Agulha , Western Blotting , Ativação do Complemento , Fator B do Complemento/imunologia , Fator B do Complemento/metabolismo , Modelos Animais de Doenças , Glomerulonefrite por IGA/patologia , Imuno-Histoquímica , Testes de Função Renal , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Receptores de Complemento/metabolismo , Taxa de Sobrevida
15.
Sci Rep ; 8(1): 7348, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29743491

RESUMO

Geographic atrophy (GA), the advanced form of dry age-related macular degeneration (AMD), is characterized by progressive loss of retinal pigment epithelium cells and photoreceptors in the setting of characteristic extracellular deposits and remains a serious unmet medical need. While genetic predisposition to AMD is dominated by polymorphisms in complement genes, it remains unclear how complement activation contributes to retinal atrophy. Here we demonstrate that complement is activated on photoreceptor outer segments (POS) in the retina peripheral to atrophic lesions associated with GA. When exposed to human serum following outer blood-retinal barrier breakdown, POS act as potent activators of the classical and alternative complement pathway. In mouse models of retinal degeneration, classical and alternative pathway complement activation on photoreceptors contributed to the loss of photoreceptor function. This was dependent on C5a-mediated recruitment of peripheral blood monocytes but independent of resident microglia. Genetic or pharmacologic inhibition of both classical and alternative complement C3 and C5 convertases was required to reduce progressive degeneration of photoreceptor rods and cones. Our study implicates systemic classical and alternative complement proteins and peripheral blood monocytes as critical effectors of localized retinal degeneration with potential relevance for the contribution of complement activation to GA.


Assuntos
Ativação do Complemento/genética , Atrofia Geográfica/fisiopatologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Animais , Atrofia/patologia , Ativação do Complemento/fisiologia , Complemento C3/genética , Complemento C3/fisiologia , Complemento C4/genética , Complemento C4/fisiologia , Atrofia Geográfica/genética , Humanos , Degeneração Macular/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/metabolismo , Células Fotorreceptoras/metabolismo , Retina/metabolismo , Degeneração Retiniana/patologia , Epitélio Pigmentado da Retina/metabolismo
16.
Science ; 360(6385): 204-208, 2018 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-29650672

RESUMO

Complex interactions between host immunity and the microbiome regulate norovirus infection. However, the mechanism of host immune promotion of enteric virus infection remains obscure. The cellular tropism of noroviruses is also unknown. Recently, we identified CD300lf as a murine norovirus (MNoV) receptor. In this study, we have shown that tuft cells, a rare type of intestinal epithelial cell, express CD300lf and are the target cell for MNoV in the mouse intestine. We found that type 2 cytokines, which induce tuft cell proliferation, promote MNoV infection in vivo. These cytokines can replace the effect of commensal microbiota in promoting virus infection. Our work thus provides insight into how the immune system and microbes can coordinately promote enteric viral infection.


Assuntos
Infecções por Caliciviridae/imunologia , Enterócitos/imunologia , Enterócitos/virologia , Microbiota/imunologia , Norovirus/fisiologia , Tropismo Viral/imunologia , Animais , Proliferação de Células , Citocinas/metabolismo , Camundongos , Receptores Imunológicos/metabolismo
17.
Semin Immunol ; 37: 4-11, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29573978

RESUMO

Rapid elimination of microbes from the bloodstream, along with the ability to mount an adaptive immune response, are essential for optimal host-defense. Kupffer cells are strategically positioned in the liver sinusoids and efficiently capture circulating microbes from the hepatic artery and portal vein, thus preventing bacterial dissemination. In vivo and in vitro studies have probed how complement receptor of the immunoglobulin superfamily (CRIg), also referred to as Z39Ig and V-set and Ig domain-containing 4 (VSIG4), acts as a critical player in pathogen recognition and clearance. While recent data suggested that CRIg may bind bacterial cell wall components directly, the single transmembrane receptor is best known for its interaction with complement C3 opsonization products on the microbial surface. On Kupffer cells, CRIg must capture opsonized microbes against the shear forces of the blood flow. In vivo work reveals how immune adherence (IA), a process in which blood platelets or erythrocytes associate with circulating bacteria, plays a critical role in regulating pathogen capture by CRIg under flow conditions. In addition to its typical innate immune functions, CRIg was shown to directly and indirectly influence adaptive immune responses. Here, we review our current understanding of the diverse roles of CRIg in pathogen elimination, anti-microbial immunity and autoimmunity. In particular, we will explore how, through selective capturing by CRIg, an important balance is achieved between the immunological and clearance functions of liver and spleen.


Assuntos
Infecções Bacterianas/imunologia , Células de Kupffer/fisiologia , Proteínas Opsonizantes/metabolismo , Receptores de Complemento/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Aglutinação , Animais , Complemento C3/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Imunomodulação , Moléculas com Motivos Associados a Patógenos/imunologia
18.
Nat Immunol ; 19(3): 246-254, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29358708

RESUMO

Defective autophagy is linked to diseases such as rheumatoid arthritis, lupus and inflammatory bowel disease (IBD). However, the mechanisms by which autophagy limits inflammation remain poorly understood. Here we found that loss of the autophagy-related gene Atg16l1 promoted accumulation of the adaptor TRIF and downstream signaling in macrophages. Multiplex proteomic profiling identified SQSTM1 and Tax1BP1 as selective autophagy-related receptors that mediated the turnover of TRIF. Knockdown of Tax1bp1 increased production of the cytokines IFN-ß and IL-1ß. Mice lacking Atg16l1 in myeloid cells succumbed to lipopolysaccharide-mediated sepsis but enhanced their clearance of intestinal Salmonella typhimurium in an interferon receptor-dependent manner. Human macrophages with the Crohn's disease-associated Atg16l1 variant T300A exhibited more production of IFN-ß and IL-1ß. An elevated interferon-response gene signature was observed in patients with IBD who were resistant to treatment with an antibody to the cytokine TNF. These findings identify selective autophagy as a key regulator of signaling via the innate immune system.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/imunologia , Autofagia/imunologia , Imunidade Inata/imunologia , Inflamação/imunologia , Animais , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/imunologia , Doença de Crohn/imunologia , Feminino , Humanos , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Transgênicos , Transdução de Sinais/imunologia
19.
MAbs ; 9(8): 1297-1305, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28854082

RESUMO

To date, ocular antibody therapies for the treatment of retinal diseases rely on injection of the drug into the vitreous chamber of the eye. Given the burden for patients undergoing this procedure, less frequent dosing through the use of long-acting delivery (LAD) technologies is highly desirable. These technologies usually require a highly concentrated formulation and the antibody must be stable against extended exposure to physiological conditions. Here we have increased the potential of a therapeutic antibody antigen-binding fragment (Fab) for LAD by using protein engineering to enhance the chemical and physical stability of the molecule. Structure-guided amino acid substitutions in a negatively charged complementarity determining region (CDR-L1) of an anti-factor D (AFD) Fab resulted in increased chemical stability and solubility. A variant of AFD (AFD.v8), which combines light chain substitutions (VL-D28S:D30E:D31S) with a substitution (VH-D61E) to stabilize a heavy chain isomerization site, retained complement factor D binding and inhibition potency and has properties suitable for LAD. This variant was amenable to high protein concentration (>250 mg/mL), low ionic strength formulation suitable for intravitreal injection. AFD.v8 had acceptable pharmacokinetic (PK) properties upon intravitreal injection in rabbits, and improved stability under both formulation and physiological conditions. Simulations of expected human PK behavior indicated greater exposure with a 25-mg dose enabled by the increased solubility of AFD.v8.


Assuntos
Anticorpos Monoclonais/imunologia , Fragmentos Fab das Imunoglobulinas/imunologia , Engenharia de Proteínas/métodos , Doenças Retinianas/imunologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/farmacocinética , Afinidade de Anticorpos/imunologia , Fator D do Complemento/imunologia , Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/imunologia , Sistemas de Liberação de Medicamentos , Estabilidade de Medicamentos , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/genética , Modelos Moleculares , Conformação Proteica , Coelhos , Doenças Retinianas/tratamento farmacológico , Doenças Retinianas/metabolismo
20.
Sci Transl Med ; 9(395)2017 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-28637922

RESUMO

Geographic atrophy is an advanced form of age-related macular degeneration (AMD) and a leading cause of vision loss for which there are no approved treatments. Genetic studies in AMD patients have implicated dysregulation of the alternative complement pathway in the pathogenesis of geographic atrophy. Lampalizumab is a potential therapeutic that targets complement factor D, a pivotal activator of the alternative complement pathway. The MAHALO phase 2 clinical trial was a multicenter, randomized, controlled study that evaluated lampalizumab administered by intravitreal injection monthly (n = 42) and every other month (n = 41) versus sham control (n = 40) in patients with geographic atrophy secondary to AMD. The primary endpoint was the mean change in lesion area from baseline to month 18 as measured by fundus autofluorescence. Specific AMD-associated genetic polymorphisms were also analyzed. The MAHALO study met its primary efficacy endpoint with an acceptable safety profile; monthly lampalizumab treatment demonstrated a 20% reduction in lesion area progression versus sham control [80% confidence interval (CI), 4 to 37%]. A more substantial monthly treatment benefit of 44% reduction in geographic atrophy area progression versus sham control (95% CI, 15 to 73%) was observed in a subgroup of complement factor I (CFI) risk-allele carriers (57% of the patients analyzed were CFI risk-allele carriers). The MAHALO study shows a potential treatment effect in patients with geographic atrophy and supports therapeutic targeting of the alternative complement pathway for treating AMD pathogenesis.


Assuntos
Atrofia Geográfica/tratamento farmacológico , Atrofia Geográfica/metabolismo , Fragmentos Fab das Imunoglobulinas/uso terapêutico , Degeneração Macular/tratamento farmacológico , Degeneração Macular/metabolismo , Idoso , Fator D do Complemento/antagonistas & inibidores , Fator D do Complemento/metabolismo , Via Alternativa do Complemento , Progressão da Doença , Feminino , Atrofia Geográfica/patologia , Humanos , Degeneração Macular/patologia , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA