Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Extracell Vesicles ; 12(11): e12376, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37942918

RESUMO

Extracellular vesicles (EVs) in blood plasma are recognized as potential biomarkers for disease. Although blood plasma is easily obtainable, analysis of EVs at the single particle level is still challenging due to the biological complexity of this body fluid. Besides EVs, plasma contains different types of lipoproteins particles (LPPs), that outnumber EVs by orders of magnitude and which partially overlap in biophysical properties such as size, density and molecular makeup. Consequently, during EV isolation LPPs are often co-isolated. Furthermore, physical EV-LPP complexes have been observed in purified EV preparations. Since co-isolation or association of LPPs can impact EV-based analysis and biomarker profiling, we investigated the presence and formation of EV-LPP complexes in biological samples by using label-free atomic force microscopy, cryo-electron tomography and synchronous Rayleigh and Raman scattering analysis of optically trapped particles and fluorescence-based high sensitivity single particle flow cytometry. Furthermore, we evaluated the impact on flow cytometric analysis in the presence of LPPs using in vitro spike-in experiments of purified tumour cell line-derived EVs in different classes of purified human LPPs. Based on orthogonal single-particle analysis techniques we demonstrate that EV-LPP complexes can form under physiological conditions. Furthermore, we show that in fluorescence-based flow cytometric EV analysis staining of LPPs, as well as EV-LPP associations, can influence quantitative and qualitative EV analysis. Lastly, we demonstrate that the colloidal matrix of the biofluid in which EVs reside impacts their buoyant density, size and/or refractive index (RI), which may have consequences for down-stream EV analysis and EV biomarker profiling.


Assuntos
Vesículas Extracelulares , Humanos , Vesículas Extracelulares/fisiologia , Imagem Individual de Molécula , Biomarcadores , Linhagem Celular Tumoral , Lipoproteínas LDL
2.
Nat Aging ; 3(10): 1251-1268, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37723209

RESUMO

Aging is characterized by gradual immune dysfunction and increased disease risk. Genomic instability is considered central to the aging process, but the underlying mechanisms of DNA damage are insufficiently defined. Cells in confined environments experience forces applied to their nucleus, leading to transient nuclear envelope rupture (NER) and DNA damage. Here, we show that Lamin A/C protects lung alveolar macrophages (AMs) from NER and hallmarks of aging. AMs move within constricted spaces in the lung. Immune-specific ablation of lamin A/C results in selective depletion of AMs and heightened susceptibility to influenza virus-induced pathogenesis and lung cancer growth. Lamin A/C-deficient AMs that persist display constitutive NER marks, DNA damage and p53-dependent senescence. AMs from aged wild-type and from lamin A/C-deficient mice share a lysosomal signature comprising CD63. CD63 is required to limit damaged DNA in macrophages. We propose that NER-induced genomic instability represents a mechanism of aging in AMs.


Assuntos
Lamina Tipo A , Macrófagos Alveolares , Animais , Camundongos , Lamina Tipo A/genética , Membrana Nuclear , Pulmão , Envelhecimento/genética , Instabilidade Genômica
3.
iScience ; 26(8): 107412, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37575190

RESUMO

The human cytomegalovirus (HCMV)-encoded chemokine receptor US28 contributes to various aspects of the viral life cycle and promotes immune evasion by scavenging chemokines from the microenvironment of HCMV-infected cells. In contrast to the plasma membrane localization of most human chemokine receptors, US28 has a predominant intracellular localization. In this study, we used immunofluorescence and electron microscopy to determine the localization of US28 upon exogenous expression, as well as in HCMV-infected cells. We observed that US28 localizes to late endosomal compartments called multivesicular bodies (MVBs), where it is sorted in intraluminal vesicles. Live-cell total internal reflection fluorescence (TIRF) microscopy revealed that US28-containing MVBs can fuse with the plasma membrane, resulting in the secretion of US28 on exosomes. Exosomal US28 binds the chemokines CX3CL1 and CCL5, and US28-containing exosomes inhibited the CX3CL1-CX3CR1 signaling axis. These findings suggest that exosomal release of US28 contributes to chemokine scavenging and immune evasion by HCMV.

4.
J Hepatol ; 79(4): 910-923, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37302582

RESUMO

BACKGROUND & AIMS: In patients with compensated alcohol-related cirrhosis, reliable prognostic biomarkers are lacking. Keratin-18 and hepatocyte-derived large extracellular vesicle (lEV) concentrations reflect disease activity, but their ability to predict liver-related events is unknown. METHODS: We measured plasma keratin-18 and hepatocyte lEV concentrations in 500 patients with Child-Pugh class A alcohol-related cirrhosis. The ability of these hepatocyte-derived biomarkers, alone or combined with model for end-stage liver disease (MELD) and FibroTest scores, to predict liver-related events at 2 years was analyzed, taking into account the alcohol consumption at inclusion and during follow-up. RESULTS: Keratin-18 and hepatocyte lEV concentrations increased with alcohol consumption. In patients without active alcohol consumption at enrollment (n = 419), keratin-18 concentration predicted liver-related events at 2 years, independently of FibroTest and MELD. Patients with both keratin-18 concentrations >285 U/L and FibroTest >0.74 had a 24% cumulative incidence of liver-related events at 2 years, vs. 5% to 14% in other groups of patients. Similar results were obtained when combining keratin-18 concentrations >285 U/L with MELD >10. In patients with active alcohol consumption at enrollment (n = 81), hepatocyte lEVs predicted liver-related events at 2 years, independently of FibroTest and MELD. Patients with both hepatocyte lEV concentrations >50 U/L and FibroTest >0.74 had a 62% cumulative incidence of liver-related events at 2 years, vs. 8% to 13% in other groups of patients. Combining hepatocyte lEV concentrations >50 U/L with MELD >10 had a lower discriminative ability. Similar results were obtained when using decompensation of cirrhosis, defined according to Baveno VII criteria, as an endpoint. CONCLUSION: In patients with Child-Pugh class A alcohol-related cirrhosis, combining hepatocyte-derived biomarkers with FibroTest or MELD scores identifies patients at high risk of liver-related events, and could be used for risk stratification and patient selection in clinical trials. IMPACT AND IMPLICATIONS: In patients with compensated alcohol-related cirrhosis, reliable predictors of outcome are lacking. In patients with Child-Pugh class A alcohol-related cirrhosis, combining hepatocyte-derived biomarkers (keratin-18 and hepatocyte-large extracellular vesicles) with FibroTest or MELD scores identifies those at high risk of liver-related events at 2 years. The identified patients at high risk of liver-related events are the target-of-choice population for intensive surveillance (e.g., referral to tertiary care centers; intensive control of risk factors) and inclusion in clinical trials.


Assuntos
Doença Hepática Terminal , Queratina-18 , Humanos , Índice de Gravidade de Doença , Cirrose Hepática Alcoólica , Cirrose Hepática/diagnóstico , Cirrose Hepática/etiologia , Biomarcadores , Hepatócitos , Prognóstico
5.
Commun Biol ; 6(1): 532, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37198427

RESUMO

Extracellular vesicles (EVs) are thought to mediate intercellular communication by transferring cargoes from donor to acceptor cells. The EV content-delivery process within acceptor cells is still poorly characterized and debated. CD63 and CD9, members of the tetraspanin family, are highly enriched within EV membranes and are respectively enriched within multivesicular bodies/endosomes and at the plasma membrane of the cells. CD63 and CD9 have been suspected to regulate the EV uptake and delivery process. Here we used two independent assays and different cell models (HeLa, MDA-MB-231 and HEK293T cells) to assess the putative role of CD63 and CD9 in the EV delivery process that includes uptake and cargo delivery. Our results suggest that neither CD63, nor CD9 are required for this function.


Assuntos
Vesículas Extracelulares , Tetraspaninas , Humanos , Comunicação Celular , Endossomos/metabolismo , Vesículas Extracelulares/metabolismo , Células HEK293 , Tetraspanina 29/metabolismo , Tetraspanina 30/metabolismo , Tetraspaninas/metabolismo
6.
Methods Mol Biol ; 2668: 33-43, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37140788

RESUMO

Transmission electron microscopy (TEM) is currently the only method that enables the observation of extracellular vesicles (EVs) at a nanometer scale. Direct visualization of the whole content of EV preparation provides not only crucial insights on the morphology of EVs but also an objective evaluation of the content and purity of the preparation. Coupled to immunogold labeling, TEM allows the detection and association of proteins at the surface of EVs. In these techniques, EVs are deposited on grids and are chemically immobilized and contrasted to withstand a high-voltage electron beam. Under high vacuum, the electron beam hits the sample and the electrons that scatter forward are collected to form an image. Here, we describe the steps needed to observe EVs by classical TEM and the extra steps required to label proteins through immunolabeling electron microscopy (IEM).


Assuntos
Vesículas Extracelulares , Microscopia Eletrônica de Transmissão , Microscopia Eletrônica , Vesículas Extracelulares/metabolismo , Proteínas/metabolismo
7.
Int J Mol Sci ; 24(4)2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36835115

RESUMO

Extracellular vesicles are now considered as active contributors to melanoma progression through their capacity to modify the tumor microenvironment and to favor the formation of a pre-metastatic niche. These prometastatic roles of tumor-derived EVs would pass through their interaction with the extracellular matrix (ECM) and its remodeling, in turn providing a substrate favoring persistent tumor cell migration. Nevertheless, the capacity of EVs to directly interact with ECM components is still questionable. In this study, we use electron microscopy and a pull-down assay to test the capacity of sEVs, derived from different melanoma cell lines, to physically interact with collagen I. We were able to generate collagen fibrils coated with sEVs and to show that melanoma cells release subpopulations of sEVs that can differentially interact with collagen.


Assuntos
Vesículas Extracelulares , Melanoma , Humanos , Vesículas Extracelulares/metabolismo , Melanoma/metabolismo , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Microambiente Tumoral
8.
J Extracell Vesicles ; 11(12): e12290, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36463392

RESUMO

Extracellular vesicles (EVs) are promising carriers for the delivery of a variety of chemical and biological drugs. However, their efficacy is limited by the lack of cellular specificity. Available methods to improve the tissue specificity of EVs predominantly rely on surface display of proteins and peptides, largely overlooking the dense glycocalyx that constitutes the outermost layer of EVs. In the present study, we report a reconfigurable glycoengineering strategy that can endogenously display glycans of interest on EV surface. Briefly, EV producer cells are genetically engineered to co-express a glycosylation domain (GD) inserted into the large extracellular loop of CD63 (a well-studied EV scaffold protein) and fucosyltransferase VII (FUT7) or IX (FUT9), so that the engineered EVs display the glycan of interest. Through this strategy, we showcase surface display of two types of glycan ligands, sialyl Lewis X (sLeX) and Lewis X, on EVs and achieve high specificity towards activated endothelial cells and dendritic cells, respectively. Moreover, the endothelial cell-targeting properties of sLeX-EVs were combined with the intrinsic therapeutic effects of mesenchymal stem cells (MSCs), leading to enhanced attenuation of endothelial damage. In summary, this study presents a reconfigurable glycoengineering strategy to produce EVs with strong cellular specificity and highlights the glycocalyx as an exploitable trait for engineering EVs.


Assuntos
Vesículas Extracelulares , Glicocálix , Células Endoteliais , Transporte Proteico , Movimento Celular , Antígeno Sialil Lewis X
9.
J Cell Biol ; 221(12)2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36136097

RESUMO

Exosomes are endosome-derived extracellular vesicles involved in intercellular communication. They are generated as intraluminal vesicles within endosomal compartments that fuse with the plasma membrane (PM). The molecular events that generate secretory endosomes and lead to the release of exosomes are not well understood. We identified a subclass of non-proteolytic endosomes at prelysosomal stage as the compartment of origin of CD63 positive exosomes. These compartments undergo a Rab7a/Arl8b/Rab27a GTPase cascade to fuse with the PM. Dynamic endoplasmic reticulum (ER)-late endosome (LE) membrane contact sites (MCS) through ORP1L have the distinct capacity to modulate this process by affecting LE motility, maturation state, and small GTPase association. Thus, exosome secretion is a multi-step process regulated by GTPase switching and MCS, highlighting the ER as a new player in exosome-mediated intercellular communication.


Assuntos
Retículo Endoplasmático , Endossomos , Exossomos , Proteínas rab de Ligação ao GTP , Transporte Biológico , Comunicação Celular , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Endossomos/enzimologia , Exossomos/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
10.
Int J Mol Sci ; 23(10)2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35628321

RESUMO

Extracellular vesicles (EVs) are membranous particles released by all cell types. Their role as functional carrier of bioactive molecules is boosted by cells that actively secrete them in biological fluids or in the intercellular space (interstitial EVs, iEVs). Here we have optimised a method for the isolation and characterization of zebrafish iEVs from whole melanoma tissues. Zebrafish melanoma iEVs are around 140 nm in diameter, as determined by nanoparticle tracking and transmission electron microscopy (TEM) analysis. Western blot analysis shows enrichment for CD63 and Alix in the iEV fraction, but not in melanoma cell lysates. Super resolution and confocal microscopy reveal that purified zebrafish iEVs are green fluorescent protein positive (GFP+), indicating that they integrate the oncogene GFP-HRASV12G used to induce melanoma in this model within their vesicular membrane or luminal content. Analysis of RNA-Seq data found 118 non-coding (nc)RNAs differentially distributed between zebrafish melanoma and their iEVs, with only 17 of them being selectively enriched in iEVs. Among these, the RNA components of RNAses P and MRP, which process ribosomal RNA precursors, mitochondrial RNAs, and some mRNAs, were enriched in zebrafish and human melanoma EVs, but not in iEVs extracted from brain tumours. We found that melanoma iEVs induce an inflammatory response when injected in larvae, with increased expression of interferon responsive genes, and this effect is reproduced by MRP- or P-RNAs injected into circulation. This suggests that zebrafish melanoma iEVs are a source of MRP- and P-RNAs that can trigger inflammation in cells of the innate immune system.


Assuntos
Vesículas Extracelulares , Melanoma , Animais , Vesículas Extracelulares/metabolismo , Inflamação/genética , Inflamação/metabolismo , Melanoma/genética , Melanoma/metabolismo , RNA não Traduzido/metabolismo , Peixe-Zebra/genética
11.
Sci Adv ; 8(12): eabm1140, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35333565

RESUMO

Exosomes are extracellular vesicles of endosomal origin that are released by practically all cell types across metazoans. Exosomes are active vehicles of intercellular communication and can transfer lipids, RNAs, and proteins between different cells, tissues, or organs. Here, we describe a mechanism whereby proteins containing a KFERQ motif pentapeptide are loaded into a subpopulation of exosomes in a process that is dependent on the membrane protein LAMP2A. Moreover, we demonstrate that this mechanism is independent of the ESCRT machinery but dependent on HSC70, CD63, Alix, Syntenin-1, Rab31, and ceramides. We show that the master regulator of hypoxia HIF1A is loaded into exosomes by this mechanism to transport hypoxia signaling to normoxic cells. In addition, by tagging fluorescent proteins with KFERQ-like sequences, we were able to follow the interorgan transfer of exosomes. Our findings open new avenues for exosome engineering by allowing the loading of bioactive proteins by tagging them with KFERQ-like motifs.


Assuntos
Exossomos , Vesículas Extracelulares , Proteína 2 de Membrana Associada ao Lisossomo , Comunicação Celular , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Transdução de Sinais
12.
Nat Rev Mol Cell Biol ; 23(5): 369-382, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35260831

RESUMO

Extracellular vesicles (EVs) are increasingly recognized as important mediators of intercellular communication. They have important roles in numerous physiological and pathological processes, and show considerable promise as novel biomarkers of disease, as therapeutic agents and as drug delivery vehicles. Intriguingly, however, understanding of the cellular and molecular mechanisms that govern the many observed functions of EVs remains far from comprehensive, at least partly due to technical challenges in working with these small messengers. Here, we highlight areas of consensus as well as contentious issues in our understanding of the intracellular and intercellular journey of EVs: from biogenesis, release and dynamics in the extracellular space, to interaction with and uptake by recipient cells. We define knowledge gaps, identify key questions and challenges, and make recommendations on how to address these.


Assuntos
Vesículas Extracelulares , Transporte Biológico , Biomarcadores/metabolismo , Comunicação Celular , Sistemas de Liberação de Medicamentos , Vesículas Extracelulares/metabolismo
13.
Med Sci (Paris) ; 37(12): 1108-1115, 2021 Dec.
Artigo em Francês | MEDLINE | ID: mdl-34928213

RESUMO

Extracellular vesicles are involved in an increasing number of physiopathological processes and represent promising clinical tools for the diagnosis and treatment of various diseases. Their small size has long hindered in situ studies, which has limited their in vivo characterization and clinical use. Imaging approaches now allow the monitoring of extracellular vesicles in different animal models, in real time and at the single vesicle scale. The zebrafish appears in particular to be a relevant model organism to explore the biology of extracellular vesicles in vivo and to evaluate their therapeutic potential in preclinical studies.


TITLE: L'imagerie in vivo - Un outil incontournable pour mieux comprendre la biologie des vésicules extracellulaires. ABSTRACT: Les vésicules extracellulaires interviennent dans un nombre croissant de processus physiopathologiques et constituent des outils cliniques prometteurs pour le diagnostic et le traitement de diverses maladies. Leur petite taille a longtemps entravé leur étude in situ, ce qui a limité leur caractérisation in vivo et leur utilisation en clinique. Les avancées récentes en imagerie permettent à présent d'examiner et de suivre les vésicules extracellulaires dans différents modèles animaux, en temps réel et à l'échelle de la vésicule unique. Le poisson zèbre apparaît notamment comme un organisme modèle pertinent pour explorer le cycle de vie de ces vésicules in vivo et évaluer leurs potentialités thérapeutiques.


Assuntos
Vesículas Extracelulares , Peixe-Zebra , Animais , Biologia
14.
FASEB Bioadv ; 3(11): 918-929, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34761174

RESUMO

To harmoniously coordinate the activities of all its different cell types, a multicellular organism critically depends on intercellular communication. One recently discovered mode of intercellular cross-talk is based on the exchange of "extracellular vesicles" (EVs). EVs are nano-sized heterogeneous lipid bilayer vesicles enriched in a variety of biomolecules that mediate short- and long-distance communication between different cells, and between cells and their environment. Numerous studies have demonstrated important aspects pertaining to the dynamics of their release, their uptake, and sub-cellular fate and roles in vitro. However, to demonstrate these and other aspects of EV biology in a relevant, fully physiological context in vivo remains challenging. In this review we analyze the state of the art of EV imaging in vivo, focusing in particular on zebrafish as a promising model to visualize, study, and characterize endogenous EVs in real-time and expand our understanding of EV biology at cellular and systems level.

16.
Nat Methods ; 18(9): 1013-1026, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34446922

RESUMO

Extracellular vesicles (EVs) are nano-sized lipid bilayer vesicles released by virtually every cell type. EVs have diverse biological activities, ranging from roles in development and homeostasis to cancer progression, which has spurred the development of EVs as disease biomarkers and drug nanovehicles. Owing to the small size of EVs, however, most studies have relied on isolation and biochemical analysis of bulk EVs separated from biofluids. Although informative, these approaches do not capture the dynamics of EV release, biodistribution, and other contributions to pathophysiology. Recent advances in live and high-resolution microscopy techniques, combined with innovative EV labeling strategies and reporter systems, provide new tools to study EVs in vivo in their physiological environment and at the single-vesicle level. Here we critically review the latest advances and challenges in EV imaging, and identify urgent, outstanding questions in our quest to unravel EV biology and therapeutic applications.


Assuntos
Vesículas Extracelulares , Microscopia/métodos , Animais , Corantes/química , Epitopos , Vesículas Extracelulares/química , Vesículas Extracelulares/patologia , Vesículas Extracelulares/fisiologia , Corantes Fluorescentes/química , Humanos
17.
FASEB Bioadv ; 3(6): 456-458, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34124600

RESUMO

To keep abreast of developments in the biological sciences and in parallel fields such as medical education, FASEB BioAdvances (FBA) has created a special collections category, FBA special collections (FBA SC), that target, among other topics, emerging disciplines in the biomedical sciences. This FBA SC is focused on the emerging field of extracellular vesicles (EVs) and homeostasis. Leading investigators in the biology of EVs around the globe have contributed to this collection of articles that cover the gamut of research activities from biogenesis and secretion to physiological function.

18.
Adv Drug Deliv Rev ; 176: 113815, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34058284

RESUMO

Extracellular Vesicles (EVs) are released during various pathophysiological processes and reflect the state of their cell of origin. Once released, they can propagate through biological fluids, target cells, deliver their content and elicit functional responses. These specific features would allow their harnessing as biomarkers, drug nano-vehicles and therapeutic intrinsic modulators. However, the further development of their potential therapeutic application is hampered by the lack of knowledge about how EVs behave in vivo. Recent advances in the field of imaging EVs in vivo now allow live-tracking of endogenous and exogenous EV in various model organisms at high spatiotemporal resolution to define their distribution, half-life and fate. This review highlights current imaging tools available to image EVs in vivo and how live imaging especially in the zebrafish embryo can bring further insights into the characterization of EVs dynamics, biodistribution and functions to potentiate their development for therapeutic applications.


Assuntos
Vesículas Extracelulares/metabolismo , Modelos Animais , Peixe-Zebra/metabolismo , Animais , Biomarcadores/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Embrião não Mamífero/metabolismo , Humanos , Distribuição Tecidual
19.
Neuropathol Appl Neurobiol ; 47(5): 694-704, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33483954

RESUMO

AIMS: The objective of this study was to elucidate the early white matter changes in CADASIL small vessel disease. METHODS: We used high-pressure freezing and freeze substitution (HPF/FS) in combination with high-resolution electron microscopy (EM), immunohistochemistry and confocal microscopy of brain specimens from control and CADASIL (TgNotch3R169C ) mice aged 4-15 months to study white matter lesions in the corpus callosum. RESULTS: We first optimised the HPF/FS protocol in which samples were chemically prefixed, frozen in a sample carrier filled with 20% polyvinylpyrrolidone and freeze-substituted in a cocktail of tannic acid, osmium tetroxide and uranyl acetate dissolved in acetone. EM analysis showed that CADASIL mice exhibit significant splitting of myelin layers and enlargement of the inner tongue of small calibre axons from the age of 6 months, then vesiculation of the inner tongue and myelin sheath thinning at 15 months of age. Immunohistochemistry revealed an increased number of oligodendrocyte precursor cells, although only in older mice, but no reduction in the number of mature oligodendrocytes at any age. The number of Iba1 positive microglial cells was increased in older but not in younger CADASIL mice, but the number of activated microglial cells (Iba1 and CD68 positive) was unchanged at any age. CONCLUSION: We conclude that early WM lesions in CADASIL affect first and foremost the myelin sheath and the inner tongue, suggestive of a primary myelin injury. We propose that those defects are consistent with a hypoxic/ischaemic mechanism.


Assuntos
CADASIL/patologia , Corpo Caloso/ultraestrutura , Substituição ao Congelamento , Bainha de Mielina/ultraestrutura , Animais , Corpo Caloso/patologia , Substituição ao Congelamento/métodos , Camundongos , Bainha de Mielina/patologia , Substância Branca/patologia
20.
Biomedicines ; 8(8)2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32759666

RESUMO

In Alzheimer's disease (AD), endolysosomal dysfunctions are amongst the earliest cellular features to appear. Each organelle of the endolysosomal system, from the multivesicular body (MVB) to the lysosome, contributes to the homeostasis of amyloid precursor protein (APP) cleavage products including ß-amyloid (Aß) peptides. Hence, this review will attempt to disentangle how changes in the endolysosomal system cumulate to the generation of toxic amyloid species and hamper their degradation. We highlight that the formation of MVBs and the generation of amyloid species are closely linked and describe how the molecular machineries acting at MVBs determine the generation and sorting of APP cleavage products towards their degradation or release in association with exosomes. In particular, we will focus on AD-related distortions of the endolysomal system that divert it from its degradative function to favour the release of exosomes and associated amyloid species. We propose here that such an imbalance transposed at the brain scale poses a novel concept of transmissible endosomal intoxication (TEI). This TEI would initiate a self-perpetuating transmission of endosomal dysfunction between cells that would support the propagation of amyloid species in neurodegenerative diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...